
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991 759

Variable-Length State Splitting w ith
Applications to Average Runlength-Constrained

(ARC) Codes
Chris D. Heegard, Member, IEEE, Brian H. Marcus, Member, IEEE,

and Paul H. Siegel, Member, IEEE

Abstract-A new class of constrained systems: average run-
length constraints (ARC) are defined. These systems are defined
by requiring that the sum of n consecutive runlengths be
bounded above by a linear function of IZ. In particular, the
running average runlength of every sequence in the system is
bounded above by a constant. A general result is given on the
capacity of ARC systems. The state splitting algorithm is then
improved for variable-length graphs. This is then applied to
obtain high, fixed-rate codes from the free binary source to ARC
systems. As an example, a rate l/2, (d, k) = (2,7) code is con-
structed that has a smaller average runlength than the industry
standard (2,7) code.

- Index Terms-Magnetic recording, runlength-limited codes,
state-splitting.

I. INTRODUCTION

T HE CONSTRUCTION of efficient codes for input-
constrained channels has been a subject of research

since Shannon’s classical investigation of discrete noise-
less channels [l]. The sliding-block code algorithm of
Adler, Coppersmith, and Hassner [2], which built upon
earlier work of Franaszek [31, [4], Pate1 [5], and Marcus
[6], provided a systematic and mathematically rigorous
approach to designing practical codes for finite-memory,
constrained systems. These sliding-block codes are char-
acterized by finite-state, fixed-rate encoders and sliding-
block (that is, state-independent) decoders. Among the
constrained systems to which the algorithm applies is the
important class of runlength-limited (RRL) constraints
that have been predominant in digital magnetic storage
for over three decades.

Input-constrained channels are often represented by
finite-state transition-diagrams (FSTD) where the edge
labels of the underlying directed graph consist of a fixed
number of code symbols. Certain constraints, including

Manuscript received August 16, 1990; revised March 4, 1991. This
work was supported in part by NSF Grants ECS83-52220 and NCR89-
03931. This work was presented in part at the IEEE International
Symposium on Information Theory, Kobe, Japan, June 1988.

C. D. Heegard is with the School of Electrical Engineering, 327
Engineering Theory Center, Cornell University, Ithaca, NY 14853.

B. H. Marcus and P. H. Siegel are with IBM Research Division,
Almaden Research Center, K61/802, 650 Harry Road, San Jose, CA
95120.

IEEE Log Number 9144528.

the RLL constraints, can be represented more compactly
if one utilizes a variable-length graph (VLG), where the
edge labels in the FSTD may have different lengths, as in
Shannon’s original description of the telegraph channel.
The state-splitting technique, central to the algorithm in
[2], was extended by Adler, Friedman, Kitchens, and
Marcus [7] to constraints described by a VLG. This gener-
alized approach proved to be most effective in the con-
struction of fixed-rate (1: 1) codes from N-ary data to the
constrained system; the application to the construction of
codes with arbitrary rate (p : q) often requires represent-
ing the constrained sequences in a way that is not consis-
tent with the original variable-length structure.

In this paper, we develop an improved variable-length
state-splitting algorithm that permits the design of rate
(p : q) codes more directly from the original VLG repre-
sentation of the constraint. The modified algorithm is
then applied to a new class of constraints-called aueruge
runlength constrained (ARC) systems -that represent a
natural generalization of the familiar RLL (d, k) con-
straints. These constraints place a nontrivial restriction
upon the average runlength of binary sequences satisfying
a specified (d, k) constraint. The reduction of the average
runlength is equivalent to an increased average density of
l’s in the code sequences. Since most tim ing recovery and
gain control algorithms in digital recording systems using
peak detection are data-driven, the larger density of peaks
in the readback signal (corresponding to the l’s in the
recorded ARC sequence) can translate into improved
performance of these control loops.

The outline of the remainder of the paper is as follows.
In Section II, we introduce the ARC systems, and

describe simple representations in terms of VLG’s. Sev-
eral results related to the Shannon capacity and statistics
of the ARC sequences are then derived. We also point
out that the problem of computing capacities of ARC
systems can be viewed from the perspective of costly
constrained channels or the theory of large deviations.

In Section III, we develop the generalized techniques
for construction of efficient fixed-rate, variable-length
codes, and we indicate how the new methods can shorten
the construction procedure in [7].

OOlS-9448/91/0500-0759$01.00 01991 IEEE

760 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991

In Section IV, we describe two applications of the new
variable-length code construction methods developed in
Section III. In the first example, the well-known rate l/2,
variable-length, (d, k) = (2,7) RLL code invented by
Franaszek is rederived using the variable-length state-
splitting approach. For the second example, we consider
an ARC system satisfying the same runlength constraints,
but having an average runlength strictly smaller than the
conventional (2,7) constraint (or, in fact, the industry-
standard, rate l/2 (2,7) code). We then describe the
design of a rate 1:2, variable-length code into this ARC
system.

The Appendix to the paper contains proof details for
several of the results developed in Sections II and III.

II. AVERAGE RUNLENGTH CONSTRAINED (ARC) CODES

A. The (d, k) Runlength Constraint

A runlength constrained code d is often described by a
set of .transition sequences. Each transition sequence (or
string) in the code is a binary sequence x = xi, x2, * * . , x,,
xi E {0, l}, that satisfies certain runlength parameters. For
example, a (d, k) constrained sequence x has the prop-
erty that the length of all substrings of “0”s between
consecutive “1”s is at least d and at most k [S]. That is, if
xi-l = l, xi = xi+1 = - * * = Xi+m-l = 0, Xi+m = l,
then d I m I k. This constraint is often described by a
fixed-length graph with k + 1 vertices (if k is finite) or
d + 1 vertices (if k = m>. See Fig. 1.

The graph is termed fIxed-length since the length of
each edge of the graph is a constant; in this case each
edge represents one bit of the transition sequence.

The base-b capacity of a constraint, such as the (d, k)
runlength constraint, is equal to the limit, as n -03, of
l/n times the base-b logarithm of the number of strings
of length n that satisfy the constraint. (In this paper all
logarithms are to the base 2). The capacity is always the
logarithm of the largest root of a polynomial equation,
and there are several methods for computing it for a given
constraint [2], [8]-[lo]. In the case of the (d, k) constraint,
the capacity is equal to log(h) where A is the largest root
of

p+‘=l+A+ . . . +/pd, for finite k (la)
and

Ad”=l+Ad, for k =w. (lb)
Another method of describing runlength constraints,

that is often quite useful, is in terms of the runlengths
themselves. As will be demonstrated, these descriptions
are inherently presented by a variable-length graph. For a
given transition sequence X, define the transition times

ti = min{j> tiwIlxj = l},

(where to = 0). Then the runlengths are defined as the
differences q = ti - timl. For a sequence that satisfies a
(d, k) runlength constraint, the runlengths must satisfy
the bounds d + 15 7;: I k + 1 for all i. This is in fact an

Fig. 1. Fixed-length (d, k) graph.

k+l

i =,OO Y1 0,l

Fig. 2. Variable-length (d, k) graph.

equivalent description of the (d, k) constraint. The vari-
able-length graph for this constraint has a single vertex
(see Fig. 2). The graph is termed variable-length since the
lengths of the edges in the graph are not all equal.

B. The (d, k, a, b) Average Runlength Constraint (ARC)

The average runlength T of a runlength sequence, T =
T,,T,,* * *, T,, is defined by the average

(2)

It is of interest to describe sets of sequences that maintain
a uniform upper bound a on the average runlength. As an
example, the (d, k) constraint maintains a bound T I k + 1
on every code sequence. A nontrivial average runlength
constraint satisfies 7; I a < k + 1 for every sequence as
n + ~0. Such a constraint on the average runlength will
guarantee a minimum density l/a of “1”s in the transi-
tion sequence. Thus, an ARC constraint can potentially
provide for improved timing recovery beyond that guaran-
teed by the k constraint itself.

An auerage runlength constrained (ARC) code is de-
scribed by four parameters (d, k, a, b). In such a system,
the runlengths satisfy d + 1 I T I k + 1 and for all 1 I
mln

HEEGARD et al.: VARIABLE-LENGTH STATE SPLITTING WITH APPLICATIONS TO ARC CODES 761

or equivalently
n

c (q-a)<b. (2’)
i=m

Note that this constraint is stationary and implies a bound
of a + b/n on the average runlength, (2); in the limit as
n + 03, the average runlength is bounded by a. Conversely,
if runlength sequences are generated by a finite state
machine (e.g., an encoder) and for a given a, in the limit
as n + ~0, the average runlength (2) is uniformly bounded
by a, then (2) is bounded above by a + b/n for some b.
To see this, first observe that every runlength sequence
that is generated by a cycle (of n consecutive edges) in
the finite state machine must satisfy

for some value of a. Then observe that, for every run-
length sequence, the cumulative sum of runlengths equals
the sum of runlengths of a set of cycles and a sequence of
uniformly bounded length. The “best” value for a is the
maximum average runlength of all simple (i.e., non-self-
intersecting) cycles (there are only finitely many), and the
“best” value for b is determined by maximizing

I? K-4
i=l

over the simple paths of the finite state machine.
The ARC, for a and b integers, is conveniently de-

scribed in terms of a graph with b + 1 vertices. Label the
vertices of the graph with the numbers 0, 1, . * a, b. Then
from each vertex 0 I i I b, draw an edge to vertex 0 I j I
b, labeled with a runlength of length 1, if d + 1 I 1 I k + 1
and

j=max{O,i+l-a}.

To see this, argue as follows. Suppose that TI * * * T,,
satisfies the ARC constraint (2’). Inductively, define So = 0
and

si=max{O,&-,+q-a).

It suffices to show that whenever Si > 0 then Si I b. For
then, the sequence S, * * . S, is the state sequence of a
path in the ARC graph that generates TI * + * T,. For each
such i, let i, = max{j < i: Sj = 0). Then

Si= i (q-a)<b.
j=io+l

Conversely, every sequence of runlengths T, * . * T, gen-
erated by the ARC graph satisfies the ARC because if
so * - * S, is the corresponding state sequence, then

i=l

As an example, consider the constraint (d, k,a, b) =
(1,7,6,2) as shown in Fig. 3.

6

2~~4

Fig. 3. (d, k, a, b) = (1,7,6,2) ARC constraint.

C. The ARC Capacity

The capacity of the ARC can be determined from the
(b + 1) x(b + 1) adjacency (or transition) matrix A(D)
that describes the graph. The components of the matrix,
ai, j(D>, 0 I i, j I b, are polynomials in the variable D. If
an edge appears in the graph from vertex i to vertex j
with length 1, then the monomial D’ appears as a term in
the polynomial ai,j(D>. For example, for the constraint
(d,k,a,b)=(l,7,6,2),

0 1 2
0 D2+D3+D4+D5+D6 D7 0’

A(D)= 1
I

D2+D3+D4+D5 D6 D7 *
2 D2+D3+D4 D5 D6 I

The capacity is then equal to log(A) where A is the largest
root of det(Z - A(D-‘)) [l].

For small values of b, this determinant is given by:

b=O(d+l<a, k+l=a)

det(Z-A(D))=l-Dd+l-Dd+*- ..- -Da

b=l(d+l<a, k+l=a+l)

det(Z-A(D))=l-Dd+l-Dd+*- -a-

_ Da-1 4D” + Da+d+l

b=2(d+lsa, k+l=a+l)
det(Z-A(D))=l-Dd+l-Dd+*- . . . -Da-’

-30” +zDa+d+l+ Da+d+Z

+D a+df3.. . + D2a + Dh+d+2

b=2(d+l<a, k+l=a+2)
det(Z-A(D))=l-Dd+l-Dd+*- . . . -Da-l

-30” +zDa+d+‘+ Da+d+*.

For example, the capacity of (d, k, a, b) = (1,7,6,2) is
0.6783 * * * > 5 bits. This means that it is possible to code
the free binary source at a rate of 3 bits and maintain
these constraints. It is interesting to note that the rate 3,
(d, k) = (1,7) code [ll] satisfies the (d, k, a, b) = (1,7,6,2)
constraints. The popular (2,7) code [111 does not satisfy a
non-trivial “a” constraint; it is a (d, k, a, b) = (2,7,&O),
rate i code. However, the capacity of the ARC with ,
(d, k, a, b) = (2,7,6,3) is 0.5128 * . * bits; thus it is possible
to construct a rate $ code satisfying this nontrivial con-
straint. Such a code is derived in Section IV.

762 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991

D. The ARC Capacity-Large b

The capacity of the ARC for large values of b is of
particular interest since for any finite b, the average
runlength (2) is bounded by a in the limit as n + 03. Of
course, for large values of b, the short term average
runlength can be much larger than a and the complexity
of the constraint grows (recall that the ARC graph has
b + 1 vertices).

Let A* be the solution to (l), which determines the
capacity of the (d, k) constraint. Define

k+l
a* = j=$+lj(A*)e’.

Note that a* is equal to the average runlength of the
ensemble of the set of runlength sequences that satisfy
the (d, k) constraint. In the limit as b +CQ there are two
cases. The two cases depend upon the relationship be-
tween the constraint parameter a and the value of a*.

Theorem 1:

a) If a 2 a*, then the limiting capacity of the (d, k, a, b)
ARC as b + ~0 is equal to

log(A*).

b) If d + 1 < a < a* the limiting capacity as b + ~4 is
equal to

(l-AArlk-l),

where A is the unique positive solution to the equa-
tion

a(1 + A + * . * + Aked)

=(k+l)+kA+ *a* +(d+l)Ak-d,

if k is finite and

a-d
A=

a-d-l’

when k =CQ.

Note that when the maximum runlength is unbounded,
k =w, and d + 1 < a < a*, the capacity is equal to

(l- $i”(Al

in the limit as b +a, where h(p) is the binary entropy
function given by

h(p) = -plog(p)-(l-p)log(l-p).
With some interpretation, one can derive Theorem 1 as

a special case of formula (28) of Csiszar, Cover, and Choi
[12] (c.f. also Justesen and Hoholt I.131 and Karabed,
Khayrallah, and Neuhoff [14]). For completness, we give a
direct proof in the Appendix. The rough idea is as fol-
lows. Using the ideas of [9], Theorem 1 has a simple

d=O lfy,yty

Fig. 4. Capacity versus a for b = k = 00.

interpretation in terms of an entropy maximization prob-
lem. Let TE{d+l, d+2;+*,k+l} be a random vari-
able with distribution pi = Pr(T = j). Consider the prob-
lem of maximizing the entropy of the random variable T
divided by its mean, H(T)/E(T). This quantity (which is
measured in bits of information per unit time) bounds the
rate of any (d, k) encoder. The optimal distribution for
this maximization is geometric, pj = (A*)-‘, H(T)/E(T)
= log(A*) and E(T) = a*. This is Case a) of Theorem 1,
and H(T)/E(T) is the limiting capacity. If a further
constraint is imposed, namely E(T) I a, then it is clear
that if a 2 a*, this does not affect the optimal distribu-
tion. On the other hand, if a < a*, the additional con-
straint is nontrivial. In this case, the optimal distribution
is again geometric with pi = A -j/&A-i, H(T)/E(T) =
log(A)+log(C,A-‘)/a and E(T) = a (A is determined by
the latter.) This is Case b) of Theorem 1, and H(T)/E(T)
is again the limiting capacity whyich can be algebraically
reduced to the form in the theorem. When a 2 a*, the
limiting capacity of the (d, k, a, b) constraint, as b + ~0, is
the same as the capacity of the (d, k) constraint. On the
other hand, when d + 1 < a < a*, a loss in capacity is
incurred. See Fig. 4.

III. VARIABLE-LENGTH STATE SPLI’ITING

A. Definitions and Background

The state-splitting method for constructing fixed-rate
codes from a free (i.e., unconstrained) N-ary source
(N 2 2) into a constrained system of symbols is described
in [2]. The method depends on a fixed-length presentation
of the constraint; in particular, a labeling of a finite
directed graph by symbols of constant length. Many con-
strained systems, such as systems based on runlength
constraints, are naturally described by a variable-length
labeling. Of course, they can also be represented by
fixed-length graphs, but the variable-length representa-
tion is often more compact. In [7], the algorithm of [2] was
extended to variable-length presentations, yielding sim-

HEEGARD et al.: VARIABLE-LENGTH STATE SPLITTING WITH APPLICATIONS TO ARC CODES 763

pler constructions of fixed-rate codes. The extension of
the algorithm was described for rate (1: 1) codes. This
method can be applied to give rate (p: q) codes by
blocking arbitrary N-ary sequences into p-blocks and the
constrained sequences into q-blocks. However, this ap-
proach involves finding a presentation of the constraint in
q-blocks, thereby destroying the original variable-length
presentation. In the present paper, we show how to avoid
this by modifying the state-splitting algorithm in [7]. In
the course of doing this, we indicate how the algorithm in
[7] can be shortened in some cases. The modified vari-
able-length state-splitting algorithm is then used to con-
struct ARC codes.

In order to state the results precisely, we will make the
following definitions.

A (finite, directed) graph is a pair, 9 = (9,&‘>, of
finitely many states (or vertices), 9, and finitely many
edges 6’. Each edge has a starting state and ending state.
We let &i,j denote the set of edges from state i to state j,
and 4 denote the set of outgoing edges from state i:

cg = lJ jG,j.

We usually assume that the graph 9 is irreducible: there
is a path (i.e., a sequence of edges) from each state to
every other state.

A labeled graph is a triple (9, P, w) where 9 is a
graph, 7 is a finite alphabet and w is a labeling function

w: ri?+r*,

where #“* = U T=aYk. The labeling function assigns a
word w(e) = wlw2 * * . wI of length I> 0 to each edge of
the graph 9. For a labelled VLG, the labelling w on
edges determines a labeling w(y) on paths y. A labeling
is called right-closing if for each sufficiently long word
w=wl” * w, and each state i, there is an edge e = e(w, i>
such that, if y is a path that begins at state i and if w is a
prefix of w(y), then y begins with e. A labeling is called
right-resolving if the outgoing edges are labeled distinctly
and the labels constitute a prefix-free list. Clearly, every
right-resolving labeling is right-closing, but the converse is
false. The right-closing property can be thought of as a
“delayed” version of right-resolving. Note that the label-
ing of the RLL and ARC systems in Figs. 2 and 3 are
right-resolving. The terms right-closing and right-resolv-
ing, introduced in symbolic dynamics, have in the past
been applied to labelings of fixed-length graphs. In that
context, the term right-closing means the same as the
expressions lossless of finite order or of local finite antici-
pation, and the term right-resolving means the same as
the terms uniflar (used in source coding) and determinis-
tic (used in automata theory) [15].

A variable-length graph (VLG) is a pair, (9, I), consist-
ing of a finite directed graph 9, and a length function

1: &4+={1,2;**},

defined on the edges of 9, which takes on positive
integer values. A fixed-length graph is a VLG with a
length function that is equal to a constant.

A subgraph of a VLG (&,I> is a VLG (@,I’) satisfying
9’ c 9, 8’ c B, l’(e) = l(e) for every edge e E B’, where
9 = (4,&j and 9’ = (S’, F’).

A VLG is obtained from a labeling of a graph 9 by
taking the length of the edge to be the length of the label.
VLG’s that are obtained from a labeling of a graph are
the main concern of this paper. The length function
determines the length of the paths in the graph: if

y = e1e2 ’ . . ek
is a path through 9 (where the ei E F), then

l(Y) s i l(ei)
i=l

is the length of y.
A path through the graph,

y=e,e,.-’ ek,
is said to be a cycle of 9 if the beginning state of edge e,
coincides with the ending state of edge ek.

Let P(#,l), the period of an irreducible (9,1), denote
the greatest common divisor of the lengths of the cycles of
9. If an integer q divides P(@,l), then there exists a
phase function

c: 9-t{o,l,*~*,q-l}
such that if e is an edge from state i to state j, then

c(j) = l(e) + c(i) modulo q. (3)
Such a function is uniquely determined once c(i,) is set
equal to 0 for some (arbitrary) state i,. Namely, set
c(i) = l(y) modulo q where y is any path from i, to i.
The reader may check that c(i) is well defined, indepen-
dent of the choice of y, and satisfies (3).

Finally, let A(D) denote the adjacency matrix of a
VLG (&,I). The i, j component of A(D) is defined to be

Ai,j(D) = c Dt(@.
eEgj

Conversely, given a matrix A(D), whose entries are inte-
ger polynomials in D, the matrix is an adjacency matrix of
a VLG if (1) the coefficients of the polynomials in A(D)
are nonnegative and (2) the exponents are strictly posi-
tive.

Define C(9,l) = log(A) as the capacity of (&,I) where
A is the largest root of the equation det(Z - A(D-‘1) = 0.
If a constrained system is defined by a right-closing label-
ing, then C(9,l) is the capacity of the constraint, as
described at the beginning of Section II.

B. Encodability

As in [7], starting with a variable-length graph (satisfy-
ing necessary capacity and periodicity assumptions) a se-
quence of variable-length graphs is produced via a state-
splitting algorithm. The splitting ultimately produces a
new variable-length graph that is suitable for use as a
finite-state encoder in the following sense.

Let N be the input alphabet size, a positive integer,
and p, q a relatively prime pair of positive integers. A

764 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991

VLG (.#,I) is N-codable at rate (p : q) if there exists a
length function, which we will call an input length func-
tion ,

I*: &?+z+ (da)
such that the rate is constant on cycles: for every cycle y

l*(Y) = $1(Y), (4b)

and the Kraft Inequality is satisfied with equality for all
iE.M,

c N-- l*(e) = 1. (5)
e E 4

(This differs slightly from the definition in 173).
Suppose a VLG, (9, I), is N-codable at rate (p : q) and

is obtained from a labeled graph, (9, P’, w), that is right
closing. Then it is possible to define an encoder that maps
the free N-ary source into the constraint described by the
labeled graph, at rate (p : q). The encoder is constructed
as follows. By (51, we can apply the Kraft Theorem (see
[19, p. 411) to construct, for each state i of S, a complete,
prefix-free list of N-ary words a(e) E Y*, with lengths
l*(e) for each edge e E 4. (Complete means that every
N-ary word either is a prefix of a word in the list or has a
prefix in the list). The encoder is then defined by assign-
ing the input word a(e) to the output word w(e). The
encoder, as defined, has rate (p : q) on every cycle, by (4).
(It can be shown that the encoder can be transformed to a
rate (p:q) encoder in the standard sense. For an exam-
ple, see the discussion at the end of Section IV-B.) The
right-closing property of the labeling implies that the
encoder has an inverse-a (state-dependent) decoder.

Let p, q be positive integers and suppose that q divides
the period of a VLG (9,l). For each state i, let mi 2 0 be
a nonnegative integer, and let V(D) be the diagonal
matrix with entries

v,,,(D) = Dmi+c(i)p/q, (6)
where c(i) is the phase function described by (3). The
matrix

A*(D)=V(D)A(DP’q)V(D-l)

is called an input matrix. Note that

Azj(D) = c Dt*(@
e’q.?i

(74

PI

where

l*(e)=$(l(e)+c(i)-c(j))+mi-mj. (8)

By the definition of the phase function in (3), each
l*(e) is an integer. Thus, the entries of an input matrix
A*(D) are polynomials in D and D-’ with nonnegative
integer coefficients. Note that from (8), l* satisfies (4b).
The lengths of edges are adjusted (by resealing and
adding/subtracting quantities that are “neutral” on each
cycle) so that the input lengths are integral and are scaled
correctly by the rate, p/q. (Note that the mi are some-

what arbitrary; for example, setting each mi = 0 is per-
fectly fine. However, the flexibility of choosing nontrivial
mi’s turns out to be very useful in practice for shortening
the code construction process. This will become apparent
in Section IV).

As you would expect, not every adjacency matrix A(D)
of a VLG has an input matrix A*(D) for which the
function l* is an input length function. First, the matrix
A*(D) need not be an adjacency matrix (i.e., it may have
zero or negative exponents, l*(e) I 0) and second, the
exponents l*(e) need not satisfy (5). One necessary re-
quirement for the existence of an input length function is
that the capacity satisfies C(&,l) 2 (p/q)log N. If p and
q are relatively prime, then another necessary condition is
that q divides the period P(z9,l). We show that these
conditions are also sufficient by providing an algorithm
for finding an equivalent VLG (i.e., a graph that describes
the same constraint) with an input length function. In
general, given that the capacity and period requirements
are satisfied, some operations must be performed to alter
the graph in order to obtain an input matrix that corre-
sponds to an input length function. These alterations are
guided by an approximate eigenvector. These procedures
will always produce a VLG that is N-codable at rate
(P : 4).

C. Approximate Eigenuectors

Let (Y be a positive real number. Let A(D) be a square
matrix with polynomial entries in D and D-l with non-
negative, integer coefficients (e.g., the adjacency matrix,
A(D), for a VLG or an input matrix, A*(D).> An cy-
approximate eigenvector for A(D) is a positive real vector
x such that

A(a-‘)x r x.

We are most interested in (Y of the form Nplq or N.
Let y be a positive integer vector and, with diagonal
V(D) as in (6), define

x=V(N)y Pa>
or equivalently,

xi = y,N mi+cWp/q (9b)
Then x is an NP/q-approximate eigenvector for A(D)

A(N-p’q)x 2 x, (lOa>
if and only if y is an N-approximate eigenvector for
A*(D)

A*(N-‘)y 2 y. (lob)
Equivalently, for all i E 4

F e 5. N-pr(e)‘q~j 2 xi,
‘5,

if and only if

c c N-‘*@yj 2 yi.
j CTEK.,~

HEEGARD et al.: VARIABLE-LENGTH STATE SPLITTING WITH APPLICATIONS TO ARC CODES 765

G

1

k 3

2

>

1) 5 i

j 4

1s
Fig. 5. Example of fusing state i.

(G',i)

89

Lemma 1: Let N be a positive integer and p, q a
relatively prime pair of positive integers. If the capacity
satisfies C(9,l) 2 (p/q)log N and q divides the period
P(9, I), then (9, I> has a NP/q-approximate eigenvector
x such that for each state i, xi is the product of a positive
integer yiNmi and Nc(i)p/q, where c(i) is the phase func-
tion described in (3). Moreover, each xi can be expressed
as in (9b), where N does not divide yi (yi > 0 is a positive
integer and mi 2 0 is a nonnegative integer).

Proof of Lemma I: Let I/(D) be as in (6) with any
choice of nonnegative m, 2 0 (e.g., m, = 0). Let A*(D) be
as in (7). By linear algebra, the determinant det(Z -
A*(D-l)) is equal to the determinant det(Z - A*(D-P/q))
and, therefore, its largest root is at least N. So, apply [7,
Proposition 41 to A*(D). This works even though A*(D)
may have entries with negative powers of D. This yields a
positive integer solution y to (lob). Now, let x be defined
as in (9) (with the same choice of mi>. Absorbing the
powers of IZ that divide yi into N”” yields the desired
form. 0

Remark I: Let x be an NP/q-approximate eigenvector
in the form specified by the lemma; that is, each xi is
expressed as in (9b) with yi not divisible by N. We call the
vector y = {yi} the (x, &induced vector and A*(D) (as in
(7)): the (x, &induced input matrix.

An iterative method (due to Franaszek [4, Appendix]
and described in [2, Appendix]) can be used to find
approximate eigenvectors for VLG’s, as outlined in Sec-
tion IV.

D. Fusing, Pruning, and State Splitting

A fusion of a VLG (9, I) is a VLG (#,I’) obtained
from (9, I) as follows. Let state i E 9 have no self-loops
(i.e., IG::,J = 0). Delete state i and all of its incident
(incoming and outgoing) edges; for each pair of states
j, k E 9 (j, k # i), and each pair of edges (e, f> E q.,i X
c$+, insert an edge g from state j to state k with length
equal to Z’(g) = Z(e)+ Z(f). We then say that state i has
been fused. A labeled graph is fused in an analogous
fashion; the label w(g)= w(e)* w(f), where the asterisk
is the concatenation operator. Fig. 5 shows an example of
the fusing operation, the numbers on the edges represent
the edge lengths.

a, b, c

a, b

d

Fig. 6. Example of splitting state i.

A pruning of a VLG means the procedure of obtaining
a subgraph of the VLG (i.e., removing edges and/or
states).

Let x be a vector indexed by the states of a VLG
(9,Z). Both operations, fusion and pruning, yield a new
VLG whose states 4’ are a subset of the states of 9.
The vector x’ defined by

Xf = xi, for all i E J’,

is called the inherited vector of x.
Suppose a VLG (S’, 1’) is obtained from a VLG (9,Z)

by a fusing operation. If x is an a-approximate eigenvec-
tor for (9,1), then the inherited vector x’ is an (Y-
approximate eigenvector for (S’, I’). In addition, if the
VLG (&,I) is irreducible, so is the VLG (S’, I’). For the
pruning operation, neither of these statements need hold.
In both the fusing and pruning operations, however, the
right-closing and right-resolving properties of a labeled
graph are preserved.

By a state splitting of a VLG (9,l) we mean a new
VLG constructed as follows: Split a state i of 9 into two
descendant states i, and i, by partitioning 4, the set of
outgoing edges from i, into two dz$joint sets and assigning
one set c$::, to i,, and the other set G::, to i,. Next,
replicate incoming edges to i, and i,. In Fig. 6, we have
split state i according to the partition gi::, = {a, b,d} and
c$::, = {c, e, f}. Note that the self-loops at state i are both
incoming as well as outgoing edges, and thus they are
replicated.

Note that after splitting, the number of outgoing edges
satisfies

and the number of incoming edges satisfies

IU k&k,il = IU kFk,ill = IU kck,i,l*

766 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 31, NO. 3, MAY 1991

The new graph inherits a length function (and a labeling)
in the obvious way. If the original labeling is right-closing,
then the inherited labeling is also right-closing. However,
if the original labeling is right-resolving, then the inher-
ited labeling is right-closing, but it need not be right-
resolving.

State splittings can be described in terms of the n X n
adjacency matrix, A(D), by splitting a row and copying
the corresponding column (corresponding to splitting out-
going edges and replicating incoming edges), producing
an (n + l)x(n + 1) adjacency matrix A’(D). To be pre-
cise, let R,(D) denote row i of A(D). Any splitting of
state i determines a decomposition:

Ri(D) = Ril(D) + Riz(D) 3

where RJD), RJD) are rows with polynomials in D with
nonnegative integer coefficients. Let

B(D) =

and let C,(D) denote column j of B(D). Then
A’(D) =(C,(D) C,(D) .a*

ci-l(D) ci(D> ci(D> ‘i+lCD>

Since (Y > 1, the edge e is not a self-loop. If Iel= 1,
then state i has no self-loops and we can fuse state i to
produce a VLG (S’,l’>. As mentioned in Section III-D,
(S’, 1’) is an irreducible VLG and the inherited vector x’
is still an a-approximate eigenvector.

If, on the other hand, 141 2 2, then let (S’,/‘> be the
subgraph of (9,1) obtained by pruning all outgoing edges
from i other than e. The inherited vector x’ is still an
a-approximate eigenvector, but (9’,1’) may fail to be
irreducible. However, any graph must have a sink compo-
nent, an irreducible subgraph such that all edges that
begin in the subgraph must end in the subgraph. Replac-
ing (S’,/‘> with a sink component of (S’,/‘> yields an
irreducible subgraph whose inherited vector x’ is still an
a-approximate eigenvector.

. . .
cm)

is the adjacency matrix of the VLG obtained by the
splitting.

E. Tight Approximate Eigenvectors and N-codable KG’s

The procedures of fusing, pruning, and state-splitting
can be applied to produce encodable VLG’s, as illus-
trated in Section IV. In this section and Section III-F, we
prove the basic coding result:

In both cases, fusing or pruning, the operation pro-
duces an irreducible VLG with a smaller number of edges
than (9,O and whose inherited vector is still an (Y-
approximate eigenvector. Since the graph is finite, this
process must terminate with a tight a-approximate eigen-
vector. 0

Lemma 3: Let (9,1) be an irreducible VLG with an
NP/q-approximate eigenvector x and induced vector (as
in Remark 1) y = 1, the all l’s vector. Then, there is a
VLG, obtained from (9, I> by a sequence of fusing/prun-
ing operations, which is N-codable at rate (p : q).

A VLG (9, I> can be “transformed” into a VLG (3, i>
that is N-codable at rate (p : q) if and only if the capacity
satisfies C(9,1)2(p/q)log N.

Proof of Lemma 3: By Lemma 2, it may be assumed
that x is tight. Thus, for all edges e E &i,j,

N-@/q)@)Xj < xi,

The proof involves the notion of a tight approximate
eigenvector, which we define next. The proof uses an
iterative state-splitting procedure in which, after each
iteration, we need to ensure that the resulting approxi-
mate eigenvector is tight. (In practice, however, it is our
experience that it is usually not necessary to have a tight
eigenvector before splitting in order to carry out a suc-
cessful code construction).

which is equivalent to (see the definition (8) of Z*(e)>

N-‘*‘@yj < yi.

But since y = 1 (each yi = 0, each length l*(e) is positive.
Combining this with the form (8) of l*(e), it is immediate
that l* satisfies (4a) and (4b).

The hypothesis y = 1 yields, for each state i E 9,

Let x be an a-approximate eigenvector for a VLG c N-j*@) 2 1.
(9,1X We say that x is tight if for all i, j E 9 and all e E 4.

edges e E gi::, j

Note that if x is tight, any pruning operation must
retain at least 2 outgoing edges from each state in order
to ensure that the inherited vector satisfies the cr-
approximate eigenvector inequality.

Lemma 2: Let (9,1) be an irreducible VLG. Let x be
an a-approximate eigenvector, with 1y > 1. Then there is
an irreducible VLG (S’, 1’) obtained from (9,1) by a
sequence of fusing/pruning operations such that the in-
herited vector x’ is a tight a-approximate eigenvector.

Proof of Lemma 2: Suppose x itself is not tight.
Then, there are states i, j and an edge e E 4,j such that

ckde)Xj 2 xi.

HEEGARD et al.: VARIABLE-LENGTH STATE SPLI’ITING WITH APPLICATIONS TO ARC CODES 767

This, together with the fact that each I*(e) is a positive
integer, implies that for each state i E 9 there is a subset
of outgoing edges 6 c 4 such that (5) is satisfied

c N- l*(e) = 1.
e E ci=j

Now, replace (&,I) by the subgraph obtained by pruning
all other edges, i.e., all but lJ iEgEi. This subgraph is
N-codable at rate (p : q). 0

F. Basic Result: Obtaining N-Codable VLG’s
In this section, we prove the basic coding theorem for

VLG’s. We first define the concept of a q-fold trellis, to
which we refer in the proof.

A q-fold trellis is a graph gq = (4 X 10, 1, * * *, q - l], 8’)
obtained from the graph J = (9,&X If edge e goes from
state i to state j in the original graph, then for each state
(i,k), O<k<q, th ere is a copy of the edge e going to
(j, k + l(e) modulo q), Note that the capacity of the
q-fold trellis is the same as the original graph, and its
period is divisible by q. If the original graph has a
labeling, then the q-fold trellis naturally inherits a label-
ing that describes the same constraint.

Theorem 2: Let (3, I) be a VLG, N a positive integer,
and p,q be a relatively prime pair of positive integers.
Suppose also that C(&, I) 2 (p/q)log N, and that q di-
vides the period, P(3, 0. Let x be a (NP/q)-approximate
eigenvector with induced vector y (as in Remark 1). Then
there exists a VLG, (5, i>, obtained from (&,I) by a
sequence of fusing, pruning, and at most Ci(yi - 1) state
splitting operations such that:

and
(2, i) is N-codable at rate (p : q)

?? has at most cyi states.
i

Discussion: The proof of the theorem is obtained by
iteratively applying state splitting followed by fusing/
pruning operations until a graph which is N-codable at
rate (p:q) is produced. The idea is that, in each step of
the splitting process, a certain state i is identified and
split into descendant states i,,i, such that the ith compo-
nent yi of the induced vector is the sum of two strictly
smaller positive integers, yi = yilNmil + yi2Nm% Thus, the
sizes of the components of the induced vector monotoni-
cally decrease until each component satisfies yi = 1. Note
that it is desirable to find large factors of N in the split
components since these factors are “absorbed” into
m,,, mj2 of the induced vector (Remark 1). For example, if
N = 2, yi = 5, and yi is split into 5 = 4 + 1, then yi, = yiZ =
1, mil = 2 and miz = 0; in this case, no further splitting is
required for either descendant state i, or i,. If, on the
other hand, the splitting is 5 = 3 +2, then yil = 3 > 1,
yiZ = 1, miI = 0 and mi2 = 1, and state i, requires further
splitting.

Once y has been reduced to the all l’s vector, we apply
Lemma 3 to produce a VLG that is N-codable at rate

(p: q). The choice of splitting is determined by Proposi-
tion 1, which we state after a brief discussion of code
construction. The proof of Proposition 1 is obtained by
reduction to [7].

One uses Theorem 2 to construct codes as follows: Let
a constrained system be presented by a right-closing label-
ing of a VLG (9,0 with capacity C(9,1) 2 (p/q)log N
(a necessary condition for a rate (p : q) code). If
Cc.3, I> = (p/q)log N then the period assumption, q di-
vides P(9, 0, can be deduced from the Perron-
Frobenius Theory (See [16, 171). Otherwise, if needed, the
period assumption can be met by enlarging the VLG into
a q-fold trellis, to which we can then apply the theorem.
Since (g,i> is N-codable at rate (p: q), the free N-ary
source can be encoded into the constraint. Since splitting,
fusing, and pruning preserve the right-closing property,
the VLG (g,i) produced by Theorem 2 inherits a right-
closing labeling from the original right-closing labeling on
(&,1), and decoding can be performed in a state-depen-
dent manner, with delay.

In many cases, the method described here shortens the
code construction procedures described in previous pa-
pers. For example, in the case p = q = 1, a VLG is N-
codable at rate (p : q) if it has an approximate eigenvec-
tor, all of whose components are simply powers of N. As
previously observed, in such a case one can construct a
rate (1: 1) code without any splitting at all, in contrast to
the method described in [7]. In other cases, splitting is
required by the new method, but typically not as many
splittings are needed. For instance, splitting a state so
that the ith component yi of the induced vector is split
into two summands, at least one of which is a power of N,
shortens the splitting process. While the same codes may
be found by using the previous state splitting methods
([2], [7]), the computational procedure produced here is
often shorter and produces reasonably simple codes.

Proposition 1: Let (&,I), N, p, q and x, y be as in
Theorem 2. Suppose that x is tight. Then either (9,1)
has a subgraph with an induced vector of all ones (i.e.,
y = 1 for the subgraph) or for some state i, there is a
decomposition of the ith row of the induced matrix,
A*(D), into two rows, R;(D), R:(D), (polynomials in D
and D-’ with nonnegative, integer coefficients)

RT(D)=R,T(D)+R$(D)

and positive integers u,v such that

R,T(N-‘)y 2 u, Ri”,(N-‘)y 2 v (lla)

and
u+v=y,. (lib)

The proof of Proposition 1 is given at the end of the
Appendix.

Proof of Theorem 2: By Lemma 2, we may assume
that x is tight and, by Lemma 3, that, for all subgraphs,
the induced vector y # 1. Now apply Proposition 1. The
decomposition of RF(D) naturally determines a partition
of the outgoing edges gi of state i in (&,1> for a state

768 IEEETRANSA(3TIONSONINFORMATION~EORY,VOL.37,NO.3,MAY1991

splitting operation. The vector x’ defined by:

i

UNm,+c(i)P/q , j=i,;
xi = uN"iicCilP/q, j= i,;

xj, otherwise;

is easily checked to be an N P/q-approximate eigenvector
for (&‘, /‘>, the VLG produced by this splitting. Write
,y = yilNmi, and v = yi2Nmiz, where N does not divide
either yi, or yi,. Then, the vector y’ induced by n’ is given
by:

I

Yi,, j=i,;
Y; = yi2, j=i,;

Yj, otherwise.

Since max{u, v] < yi, the process which iteratively splits
(9, I) into (9, /‘> must terminate (i.e., at some point, for
some subgraph, the induced vector, y = la. At this point,
Lemma 3 can be invoked to complete the procedure for
finding the N-codable VLG. Clearly, the number of itera-
tions is at most

~(Yi-l)o 0

G. Decoding

We briefly discuss the decoding problem. Since the
labelings of interest are right-closing, the role of
input/output can be reversed to convert the finite-state
encoder into a finite-state decoder with delay. However, it
is often desirable for the decoder to be a sliding-block
mapping, i.e., the decoded p-block should depend on only
a bounded amount of memory/anticipation of the input
to the decoder. This property guarantees limited error
propagation when the code is used on a noisy channel.

The problem of constructing sliding-block decoders has
been studied in detail in [Ml, and is, in general, very
difficult. However, it is quite tractable in the case of
finite-memory constraints, which we now discuss.

A labeling has finite memory if the mapping from
bi-infinite paths to bi-infinite sequences, generated by the
labeling function w: B + Y’, is one-to-one. A finite-mem-
ory constraint is one that can be presented by a finite-
memory labeling. It is easy to see that the finite memory
property is preserved by fusing, pruning, and state split-
ting.

Now, if a VLG is N-codable at rate (p : q) and has a
labeling that has finite memory, then the decoder can be
made sliding-block-roughly because the finite memory
property implies that for sufficiently long words w, all the
paths that generate w must agree at some time. When
designing a rate (p: q) code, the construction algorithm
based upon Theorem 2 may require the replacement of a
VLG by its q-fold trellis. Even if the VLG has a finite-
memory labeling, the corresponding labeling of the q-fold
trellis need not. However, if we add to the edge labels in
the q-fold trellis an indicator of the accumulated number
of symbols modulo q, then the labeling will have finite

memory. Strictly speaking, this changes the constraint, but
in practice the decoding of a rate (p : q) code requires the
availability of this phase information, Thus, for any
finite-memory constraint, the encoders constructed in this
paper have sliding-block decoders. While RLL constraints
have finite memory, the ARC constraints, in general, do
not. However, for certain ARC constraints, there are
constructions of decoders that are effectively sliding-block,
provided that certain physically measurable quantities are
available. This is illustrated by an example in Section
IV-C.

IV. EXAMPLES OFARCANDVARIABLE-LENGTH
STATESPLITTING

A. Algorithm for Finding Approximate Eigenvectors

We first recall an algorithm due to Franaszek to find
approximate eigenvectors [2], [4]. Given a VLG ($,1>
with C(&,1) 2 (p/q)log N, and q dividing P(&,Z), the
procedure finds an Nplq- approximate eigenvector. With
each mi = 0 (in (6) of Section III), let input matrix A*(D)
be as in (7) (of Section 111). Then, with some initial choice
of a positive integer vector y(O), iterate

yj” + l) = min (yirn), [(A*(N-‘)Y’“‘)iJ)>

where 1. J denotes the greatest integer function.
The sequence y(‘@ consists of nonincreasing, nonnega-

tive integer vectors. Therefore it must eventually stabilize
to some vector y. For this limiting vector,

A*(N-‘)y 2 y.

Let x be the nonnegative vector

Then, x is an NPlq -approximate eigenvector provided
that all of its components are strictly positive. If some
components are 0, then simply prune to the subgraph
determined by the states whose components are strictly
positive. Unfortunately, x may be the all O’s vector, in
which case the result is the empty graph. Fortunately, this
will not happen if the initial choice y(O) is sufficiently
large. Note that often one can get a smaller y, namely the
induced vector y determined by x as in Remark 1 (i.e.,
separate out from yi the powers of N that divide yi).
Also note that the procedure sometimes finds an approxi-
mate eigenvector for a proper subgraph of the original
VLG, since some of the components are zero. This is
certainly good enough for coding purposes.

B. A VLG Approach to “(2,7) ”

As an example of the variable-length state-splitting
technique, consider the (d, k) = (2,7) constraint, with
N = 2. The algorithm proceeds as follows. First, for the
variable-length graph in Fig. 7, the adjacency matrix is

A,(D)=D3+D4+D5+D6+D7+Ds,

HEEGARD et al.: VARIABLE-LENGTH STATE SPLITTING WITH APPLICATIONS TO ARC CODES 769

a

(QQl, Qm
oooo1,oaooOl,

0 oooooo~ ooooooO1)

Fig. 7. Variable-length representation of (d, k) = (2,7) constraint.

and the largest root of

det(Z- A,(D-l))

= 1 -(D-3 + D-4 + D-5 + D-6 + D-‘+ D-*)

is A = 1.431346 * * * , so the capacity C = log,(h) =
0.517372. * * . This means that it is possible to encode
binary data into the (d, k) = (2,7) constraint at any rate
less than 0.517372 * * * . An obvious choice is to encode at
rate (p : q) = (1: 2). Note that the graph is aperiodic; that
is, PC.4, I) = 1.

Before the state splitting algorithm can be applied, the
graph must be made periodic with period PC&, 1) = q = 2.
The 2-fold trellis is shown in Fig. 8. For this graph, the
adjacency matrix is

A,(D) =
i

D4+D6+D8 D3+D5+D7
D3+D5+D7 I D4+D6+D8 ’

This VLG has period 2; we choose the phase function
c(O) = 0, c(l) = 1. The reader may check that applying the
approximate eigenvector algorithm with y(O) = : yields 0

a 21/2-approximate eigenvector. Then x and A,(D) de-
termine the induced vector

Y= ;
(1

and induced input matrix

AI(D)

=V(D)A(D”2)V(D-1)

=(;’ $2)

*(

D2+D3+D4 ~312 + ~5/2 + ~712

p/2 + p/z + D7/2 D2+D3+D4

* (“0’ D_4,2)

= D2+D3+D4
(

D”+D’+D2
D3+D4+D5 D2+D3+D4 i

satisfying

A;(2-‘)y 2 y.

Split the graph according to the following decomposition

(0001,000001,
oooooool)

~001,00001,
@~~~~i2i-z?

000bo01) '

Fig. 8. Period-Z, Cd, k) = (2,7) constraint.

Fig. 9. Split graph, (d, k) = (2,7) constraint.

of the first row of A;(D) (see Proposition 1)

(D~+D~+D~,D~+D~+D~)

=(D2+D3+~4,D1+~2)+(0,~o).
Letting u = 2, v = 1, this decomposition satisfies (11) of
Section III:

(2-2 +2-3+2-4,2-l +2-q(i)'2

and

(O,l)(;) 21.
Note that the term Do from the first row of A,*(D) is

split off. This corresponds to splitting off the term D3
from the first row of A,(D) and therefore determines a
partition

go = &Jl u 4)*,
where go2 consists of the single edge of length 3 from
state 0 to state 1. This partition gives the new labeled
VLG, obtained by splitting, as shown in Fig. 9. The new
adjacency matrix is

A,(D)

D4+D6+D8 D4+D6+D8 D5+D7
=

with approximate eigenvector

Note that the first component, satisfying x0 = 3, has been
split into summands xol = 2 and xol = 1, and that both
descendant states O,,O, have the same phase as their

770 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991

Fig. 10. Fused graph, (d, k) = (2,7) constraint.

Fig. 11. Pruned subgraph, (d, k) = (2,7) constraint.

parent state 0. The corresponding induced vector is given
by

1
y= 1

0 1
and the corresponding induced input matrix is

AZ(D)

1

D2+D3+D4 D3+D4+D5 D2+D3
= 0 0 Do .

D2+D3+D4 D3+D4+D5 D2+D3+D4 1
According to Lemma 3, a VLG which is 2-codable at

rate (1:2) can be obtained by applying the fusion and
pruning operations to the new VLG. Fusing state 0, gives
the VLG shown in Fig. 10. Its adjacency matrix is

A,(D) =
i

D4+D6+D8 D5+2D7+D9+D1’
D3+D5+D7 D4 +2D6 +2D8 + D1’ -

The inherited 21’2-approximate eigenvector is

and the corresponding induced vector is

y= : .
(1

The induced input matrix is

A$(D) =
i

D2+D3+D4 0’ +2D3 + D4 + D5
D2+D3+D4 i D2+2D3:+2D4+D5 ’

Finally, passing to the subgraph, we obtain the VLG
shown in Fig. 11, with adjacency matrix

A,(D) =
i

D4+ D6+ D8 D5+2D7+ D9
D3+D5+D7 D4 +2D6 + D8 1

and induced input matrix

A;(D) = D2+D3+D4
D2+D3+D4

Fig. 12. Shifted graph, (d, k) = (2,7) constraint.

This VLG is 2-codable at rate (1:2) because the row
sums of A,*(2-‘) are both 1, satisfying (5). An encoder
can be made by assigning a complete prefix-free list of
(input) binary words of lengths 2,3,4,2,3,3,4 (i.e., the
exponents (with multiplicity) that appear in the rows of
A;(D)) to the outgoing edges at each state. Namely, at
state 0, assign these input words to the outgoing edges of
length 4,6,8,5,7,7,9, (the exponents that appear in row 1
of A,(D)) and at state 1 assign these input words to the
outgoing edges of length 3,5,7,4,6,6,8 (the exponents
that appear in row 2 of A,(D)). Note that this encoder
has rate (1: 2) on each cycle.

One can always transform such an encoder to one
which is of rate (1: 2) on each edge by a combination of
shifting labels and splitting incoming edges. In fact, we
shift the labels of the encoder graph corresponding to
A,(D) in the following way: three (respectively, two) sym-
bols of the strings on the outgoing edges of state 0,
(respectively, 1) are shifted off of the head of each string
and three (respectively, two) symbols of the strings on the
incoming edges of state 0, (respectively, 1) are shifted on
to the tail of each string. This yields a new labeled graph,
shown in Fig. 12, whose adjacency matrix is conjugate to
A,(D):

A6(D)=(D;3 ;2)

. D4+D6+D8 D5+2D7+D9
i D3+D5+D7 D4+2D6+ D8

= D4+D6+D8
i

D4+2D6+D8
D4+D6+D8 i D4+2D6+D8 ’

This graph has the nice property that the set of code-
words is the same for each state, {OlOO, 1000,000100,
001000, 100100, 00100100, OOOOlOOO]. Since

(1/2)2+(1/2)2+(1/2)3+(1/2)3

we can define an encoder simply by choosing a complete,
prefix-free list of binary words having lengths {2,2,3,
3,3,4,4], and choosing a l-to-l correspondence with the
codeword list. The resulting code is the Franaszek (2,7)
code that is in wide use in commercial storage devices [3].
It should be noted that the last step of the construction,
which yields this extremely simple encoder, is somewhat
ad hoc.

HEEGARD et al. : VARIABLE-LENGTH STATE SPLIlTING WITH APPLICATIONS TO ARC CODES 771

3

Fig. 13. (d,k,a,b)=(2,7,6,3)ARC.

C. A (d, k, a, b) = (2,7,6,3) ARC Code

Because a runlength of 8 labels a self-loop in the graph
in Fig. 11, the (d, k) = (2,7) encoder designed in the
previous example can produce the output sequence
00001000, OOOOlOOO,OOOOlOOO, . * * that has an average
runlength of k + 1 = 8. It is, however, possible to improve
the worst case average runlength to 6 at rate (p : 4) =
(1: 2). The (d, k, a, b) = (2,7,6,3) ARC constraint is de-
scribed by Fig. 13, where the numbers on the edges
represent runlengths, and by the adjacency matrix

\

D3+D4+D5+D6 D7 D8 0

A(D)=

D3, D4D5D6/

D3+D4+D5 D6 D7 D8
D3+D4 I Ds D6 D7 *

The capacity for this constraint is 0.515659 * * * (A =
1.429647. * * >.

This VLG has period 1. A (d, k, a, b) = (2,7,6,3) ARC
encoder can be produced by replacing this graph by its
2-fold trellis and splitting the resulting period-2 graph.

Fig. 14. (d, k, a, b) = (2,7,6,3) MOD-ARC.

It suffices to show that 5: I S, since this implies S,* I b,
and thus the runlength sequence can be generated by the
ARC graph. This is proved inductively as follows.

If S,* = 0, then clearly S,* I 5,. Otherwise,

S,f=S~-,+T,-a

IS,-, + T, - a

IS,.

The MOD-ARC (d, k, a, b) = (2,7,6,3) is shown in Fig.
14 and has adjacency matrix

\

Unfortunately, this doubles the number of states. How-
ever, an easier approach follows by considering a related
constraint called the modulo average runlength con-
straint, or MOD-ARC. This constraint, described on the
same set of states as the ARC constraint, defines a subset
of the ARC sequences.

The MOD-ARC is conveniently described in terms of
the graph with vertices labeled with the numbers
0, 1, * * *) b. From each vertex 0 I i I b, draw an edge to
vertex 0 I j I b, labeled with a runlength of length 1, if

d+l<l<k+l
i+l-a<b

and

Interestingly, the capacity of this graph is exactly l/2 (i.e.,
A = a>. The period of the graph is 2. Thus, a rate (1: 2)
code can be found directly by splitting this graph. (We

0

also mention the interesting fact that the sequences gen-

1

erated by the (1,7) codes developed independently by

2

Jacoby and Adler-Moussouris-Hassner are described by

3

the (d, k, a, b) = (1,7,6,2) MOD-ARC, a graph with ca-
pacity 2/3 and period 3. See [HI.)

0 /D6 D3+D7 D4+D8 D5
1 D5 D6

Ai(O) = 2 D4
D3+D7 D4+D8

~5 D6 D3+ D7
3 \D3 D4 D5 D6

j=i+l-a (modulo b + 1).

To see that the MOD-ARC is contained in the ARC,
we argue as follows. Let Tl . * * T, be the sequence of
runlengths of a MOD-ARC sequence. Let S, . . . S, be
the state sequence in the MOD-ARC graph of a path that
generates this sequence. Inductively, define the sequence
S: by

s,*=o

S,f=max{O,S,*_,+T,-a).

Take the phase function c(0) = c(2) = 0, c(1) = c(3) = 1.
Then

’ ’ ‘13.2”
x= !E = 9.2l”

12 3.2’
\8h/ \ 1.2712

is an eigenvector of A,(2-l/‘); that is, A,(2-‘/2)x = x.
Since the capacity is exactly l/2, a 2l/‘-approximate
eigenvector is actually an eigenvector. Now, A,(D) and x
determine the induced vector

772 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991

and the induced input matrix
0 1 2 3

0 ID3 D1+D3 Do+ 0’ D-l \

A;(D)=; ;: ;;
I

Do+ 0’ D-l + D’
D3 Do+ 0’

3 \D5 D5 D4 D3 1
satisfying AT(22’)y 2 y. We give the results of two successive rounds of state splitting and the resulting adjacency
matrices and eigenvectors, from which the reader can readily determine the explicit state splittings.

First, the graph is split into 8 states

01
02
11

A2(D) = i2

2:
22

3
with the resulting eigenvector

01 02 11 12

D6 D6 D3+D7 D3+D7

005 LY5 LY6 006
0 0 0 0

004 IY4 005 lJ5
0

D4

13

D3+D7

,7$X

0

L?

21 22 3
D8 D8 0
D4 D4 D5
D7 D7 D8

0 D4
j3 D3
D6 D6

0 D3
Do5 D5 D6

X=

This new graph is further split into 10 states,

01 02,1 02,2 11
1

01
0 2,l
0 a2
11

A3(D) = t2
3,1

1 3,~

21

22

3

12

D6 D6 D6 D3+D7 D3+D7
0

It6
0
0

0 0 0

LY5 Lt5 DOh
0 0 0
0 0 0

L!f4 D4 0 005

8
5

4A
2A
3A
8
4

8A

1*23
5.2O
1.25/2

1.2312

3.21/z
1*23
1 ‘22
1.2712

with the resulting eigenvector

X=

8
4
1

4A
2A
A

2A
8
4

8A

Lt4

=

1*23
1-22
1*2O
1.2512

1.2312

1.21/z
1.2312

1-23
1;22
1.2712

1 3,1 1 3,2

D3+D7 D3+D7
0 0

006 006
0 0
0 0

0 0 D3
D4 i5 D5 D6

21 22 3
D8 D8 0
D4 0 D5
0 D4 0

D7 D7 D8
0 0 D4
0 D3 0

D3 0 0
D6 D6 D7

HEEGARD et al.: VARIABLE-LENGTH STATE SPLIlTING WITH APPLICATIONS TO ARC CODES 773

This eigenvector determines the induced vector y that consists entirely of 1’s. So, using Lemma 3, fusion and pruning
operations produce a graph which is 2-codable at rate (1: 2). First, fuse all but four of the states to get:

01 ‘D6 D3+ 0’ 08 f D3+3 f D6+4 + D7+3 D3+4+D6~s+D7+4+D8+3+~6+4+3+D3+3+3~D7f3+3\

A,(D) = :I ;: ;;
D7+ D5+4 f D6+3 08 + D5+5 + D6+4 + D7+3 + D5+4t3 + ~6+3+3

; ,D3 D4

06 + D4+4 + D5+3 D?+D4+5+D5+4+D6+3+D4+4+3+D5+3+3

D5 f D3+4 + D4+3 06 + D3+5 + D4+4 + D5+3 + D3+4+3 f D4+3+3
)

01 11 21 3

0, /D6 D3+Di D6 $ Ds i-20” D7+ D9 -t3D1’ +2D13
\

= 1, 0’ D6 D7+2D9 0’ +3D1’ +2D’=
2, D4 D5 D6 +2D8 D7+3D9i-2D1’
3 \D3 D4 D5 + 2D7 D6 +3D8+2D10 j

with the resulting eigenvector

i 1*23 ’
x= + = 1.25’2 I, , 1*23 *

8A 1.2712

The corresponding induced vector y is again the all l’s vector with corresponding induced input matrix

21 3

0, ID3 D2+D4 D3+D4+2D5 D3+D4+3D5+2D6’
D3 +2D4 D3+3D4+2D5 .
D3 +2D4 D3+3D4+2D5
D3 +2D4 D3+3D4+2D5 ,

Note that indeed A,*(2-‘)y = y (i.e., each row sum of
A,*(2-‘) is 1.) Thus, using the lengths from the matrix
A,*(D), we choose a complete prefix-free list of binary
words at each state. From the labeled graph correspond-
ing to A,(D) we can get a list of codewords at each state.
Assignments between these lists at each state gives an
encoder. Specifically, one encodes by assigning the words
of a binary prefix-free list with lengths 3,2,4,3,4,5,5,3,4,
5,5,5,6,6 to the words generated at state 0, and a binary
prefix-free list with lengths 2,3,3,4,4,3,4,4,4,5,5 to the
words generated at the other states. The input lengths
and output codewords are shown in Table I. One can
modify the encoder by shifting labels and merging states
as in the previous example; this is not done here.

As mentioned in Section III, the ARC does not have
finite memory. One can show that the MOD-ARC also
does not have finite memory. So, the encoder just con-
structed need not have a sliding-block decoder. In fact, it
does not. Thus, if used with a noisy channel, errors may
be propagated without bound by the decoder. However,
with two additional pieces of information, the state of the
MOD-ARC graph can be correctly identified and there-
fore the state of the encoder graph can be determined,
producing a decoder with limited error-propagation.
Namely, if time modulo 4 (i.e., Cy==,T modulo 4) is known
and polarity (+ 1 or - 1) of the transition (equivalently,
IZ modulo 2), then the state of the MOD-ARC can be
determined from the Table II (assuming the sequence has
polarity + 1 at time 0).

In the setting of a recording channel, both time modulo
4 and polarity are physically measurable quantities: time
modulo 4 is determined by a clock and polarity can be
observed by the detector. One can represent this mathe-
matically by modifying the MOD-ARC to obtain a new
constraint which takes into account the additional
clock/polarity information. This is left to the reader.

ACKNOWLEDGMENT

The authors thank Mignon Belongie for proofreading
the paper and for pointing out that the values mi,mj in
(8) need not be multiples of p, thereby simplifying the
construction.

V. APPENDIX

Proof of Theorem 1: We prove the theorem for the
case k <co. The case k =w is left to the reader.

Notation: The symbols Z.d k and X.d k a,b denote the
(d, k) and (d, k, a, b) constrained systems, respectively.
For a random variable T, H(T) denotes the entropy of T
and E(T) denotes the expected value of T. Let C(C)
denote the capacity of a constrained system. As defined in
the paragraph preceding the statement of Theorem 1,
log(A*) denotes the capacity of the (d, k) constraint and
a* denotes the average runlength of the ensemble of the
set of runlength sequences that satisfy the Cd, k) con-
straint.

774 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991

TABLE I
CODEWORDS FOR (d, k, a, b) = (2,7,6,3) ARC

0, 11 2, 3

0, 3/000001

1, 2/00001

2, 2/0001

3 2/001

2/001 3/001001
4/0000001 4/00000001

5/0000010001
5/0000001001

3/000001 3/0000001
4/000010001
4/000001001

3/00001 3/000001
4/00010001
4/00001001

3/0001 3/00001
4/0010001
4/0001001

3/0010001
4/001001001
5/00000010001
5/00000001001
5/00000100001
6/0000010001001
6/0000001001001
3/00000001
4/0000100001
4/0000010001
4/0000001001
5/000010001001
5/000001001001
3/0000001
4/000100001
4/000010001
4/000001001
5/00010001001
5/00001001001
3/000001
4/00100001
4/00010001
4/00001001
5/0010001001
5/0001001001

TABLE II
STATE INFORMATION FOR (d, k, a, b) = (2,7,6,3) ARC DECODER

Time Modulo 4
Polarity

(n Modulo 2) MOD-ARC State

0 0 0
1 0 1
2 0 2
3 0 3
0 1 2
1 1 3

i
1 0
1 1

For 0 < A <w, define the random variable T” by
A-’

Pr(T”= j)=-
c(A) ’

j=d+l;**,k+l,

where
k+l

c(A)= c A-j,
j=d+l

k+l
a(A) = E(T”) = c jh-j/c(A).

j=d+l

Equivalently, T” is the geometrically distributed random
variable assuming values d + 1, * * a, k + 1 with mean
ECT”) = a(A). It is left to the reader to verify that

h(A)=H(T*)=alog(A)+log(c),

h(A) -=log(A)+;log(c),
a(A)

lim c(A) = +m,
A-0

lim c(A) = 0,
h-m

/imoa(A) = k +l, lima(A)=d+l. (12) + A-m

1 0. ’
a(h) kP c(h)

8.
hWa(N

a. c h/a

h(fJja’ = 51737.v am.6

Fig. 15. Mean and entropy-to-mean ratio for Cd, k,a, b)= (2,7,a,m)
ARC.

Also, it is not difficult to show that both c(A) and a(A)
are monotonically decreasing in A, and h(A) is a concave
function with maximum at A = 1 (h(1) = log(k - d + l),
c(1) = k - d + 1 and a(1) = (k + d)/2 + 1) and h(A)/a(A)
is a concave function with maximum h(A*)/a* = log(A*)
where A* 2 1 is the unique solution to the equation
c(A*) = 1 (a(A*) = a*> (see Fig. 15).

It is to be shown that for d + 1 < a, I a*

lim C(Z
b-tm

d,k,a,,,b) = y> (13)

where A, 2 1 is the unique solution to the equation
a(A,) = a,. This is shown in two steps: 1) if a, I a*, then
for all b

H(T”o)
C(C)+-- d,k,ao,b -

a0

and 2) for all d + 1 < a, < k + 1

lim C(Z
b-m

d,k,a,,b) 2 Fe (15)

This, together with (12) and a little algebraic manipula-
tion, establishes Theorem lb). For Theorem la), simply

HEEGARD et al. : VARIABLE-LENGTH STATE SPLI’lTING WITH APPLICATIONS TO ARC CODES 775

observe that, for a, > a*,

lw(A*) = C(Z,,,)

z d,k,a b, the ergodic theorem implies that
a, I a’*. By Corollary 1 and monotonicity

NT,) _ HP) _ fv9

E(T,) = a, I

H(T**)
=-

a* (by (13))

logc(A”) =
a*

+ log A* (by (12))

= log A*,

since, by definition a(h*) = a* and c(A*) = 1. Thus,

lim C(Z
b-m

d,k,a,b) = “g(‘*)

as desired.
For the proof of inequality (14), the following lemma is

needed [9].
Lemma 4: For y > 0 and positive function f: Y+= ?R+,

the bound

H(X) +lw(y)

J?fW
_< log(A)

holds with equality if and only if Pr(X = x) = yh
where

Note that this last equation uniquely determines A > 0.
Corollary I: For a positive random variable, T E 7,

H(T)
ET I log(A)

where

c A-‘=l.
tE9-

Inequality (14) will follow by combining the monotonic-
ity of a(A) and the concavity of h(A)/a(A) (i.e., for
a, I a*, h(A,)/a(A,) is monotonically increasing as a,,
increases to a*> and Corollary 1.

Let X=(X1,X,,- * > denote the stationary binary
process of maximal entropy on Z’d,k,ao,b and let T =
CT,, T,, * * * > denote the stationary runlength process in-
duced by X. Let H,(X) and H,(T) denote the entropy
of X and T, respectively (i.e., H,(X) = limn.+m H,(X),
H,(X) = (l/n)H(X,, X,; . *,X,>, etc.). Then,

CC2 ,,,,.,,,,)=H~(X)=+~=$+~
1

where E(T) = E(q). Since the process X is supported on

E(T,) sa,Ca,’

where a(A,) = a, and so (14) holds as desired.
We now establish (15). (The approach here follows a

similar argument in [14].) For each positive integer)2 and
E > 0, define

9=92~,,= r=r,...r,ld+l~r~~k+l,
i

i (ri-aa,)<ne .
i=l 1

View L%’ as a set of runlength strings. Since E(T”o) = a,,
we can apply the weak law of large numbers and the
asymptotic equipartition property to the random variable
T*o and obtain: for all E > 0, there exists an n such that

and
IL3122 n(H(T”o)-,)

(16)

1
--cc
n

(condition (17) is just a convenient technicality that will
be used next). Fix E > 0 and such an n, and let 1=
T~n/(a, --Cd + 1>)1. Let s denote 1 consecutive runs of
d+1. Let

where the asterisk is the concatenation operator. Note
that if II = u0 * * * ~,+~-r E .5Z’*, then

n+l
c (Ui - aO) < 0.

i=l

Now let 623 denote the set of all binary strings that
correspond to runlength strings of R*. Let A denote the
binary constrained system defined by all possible concate-
nations of elements of AT?. For sufficiently large b, de-
pending on n and E, IS.d,k,no,b contains A, and thus

C(S d,k,a,,b) 2 c(A).

Also, letting m(a) denote the length of the largest string
in B,

C(h) 2
log(IBI)
4-w

1(x(2 n(H(TA’J)-,)
1 2

(
En

n(a, + 65) +
aa-(d+1) +l I

H(T*o) - E
= E

a,+2c+
a,-(d+l)

by (16) and (17).

776 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991

Thus, for sufficiently large b, Proof of Proposition 1: Let A4 = maxi yi be the maxi-
mum component of the induced vector and S,, = {i E

w >>

H(T*o) - l

4kvao.b - E
9: yi = M) the set of states with the maximum compo-

a,+2e+ nent. There are three cases to consider.
a,-(d+l) Case I: For every state i E 4,,

But since E was arbitrary and C(zd$.&) iS mOnOtOni- c c N-l*@) 2 1.
tally increasing in b, i E 4&x e E gi, j

H(T*o)
limC(C)>p

Prune ($,I) of all the states except those in S,,. This

b+m
d,k,ao,b -

a0
yields a subgraph with induced vector y = 1.

as desired. q
Case 2: There exist states i, j E 9 and an edge e E G,j

such that l*(e) I 0.

Proof of Lemma 4: The proof consists of two simple In this case, the product N-r*ce)yj is a positive integer
steps. (since both N-l*@) and yj are). Since x is tight, from the

First, let X* be the random variable with the distribu- definition (8) of l*(e),

tion q(x) = yh -f@? Then, by definition, N-‘*@)yj < yi.

H(x) = - p(4log(q(x)) Define

= ~4(x)(f(xM3(~) -log(Y))
u = N-l"@)yj

and

= Ef(X)bz(A) -log(y). (18)
u = yi - N-'*'"'y,

J’

The discrimination (or Kullback - Liebler number > for Then u and u are positive integers that sum to yi, thereby
probability distributions p and q is defined by satisfying condition (lib). Now, let

q Plld = CP< x) log P(X) R,T(D)=(O;..,O,D’*‘“‘,O;..,O),
-

cz” i I 44 * where the single nonzero component is in the jth posi-
(See, for example, [19, p. 1071.) It is easy to show that this tion, and let
quantity is nonnegative and equal to zero if and only if
p(x) = q(x). Specifically,

R;(D) = RF(D)- R;(D).

$P(x)log g
i I

To see that (lla) holds, note that by definition
R$ (N- ') y = N-l*@)yj 2 U

q(x)

i 1

(in fact equality holds) and, since y is an N-approximate
klog(e)Cp(x) I-- eigenvector for the input matrix A*(D),

x P(X)

=log(e)Cp(x)-q(x)=log(e)(l-l)=O,
R;(N-‘)y= R;(N-‘)y- R,T(N-‘)Y

x 2 yi - N-l’(e)yj = u.

where the inequality follows from log(y) 2 log(eXl-
l/y) with equality if and only if y = 1. Thus if X has

Case 3: For each edge e E B, l*(e) > 0 and there exists

distribution p(x) and X* has distribution q(x) = yh-fcx),
a state i E 4,, such that CjEs CerE. .N-‘*(e) < 1.

Apply [7, Lemma 71 to shoG= the kstence of the
it follows that required decomposition. q

OrD(pllq)=-h(X)+ ~(n)(log(yh-f'x')-log(y))
REFERENCES

=-h(X)+ Ef(X)log(A)-log(y) [ll C. Shannon, “The mathematical theory of communication,” BeZ/
Syst. Tech. J., vol. 27, pp. 379-423; 623-656, 1948.

or [2] R. L. Adler, D. Coppersmith, and M. Hassner, “Algorithms for

h(X) +log(y) 5 EfGWw(O
sliding block codes-An application of symbolic dynamics to infor-
mation theory,” IEEE Trans. Inform. Theory, vol. IT-29, no. 1, on

Since f(x) is a positive function, both Ef(X) and Ef(X*) 5-22, Jan. 1983.
. _-

are positive and
[3] P. Franaszek, “Run-length-limited variable length coding with error

propagation limitation,” U.S. Patent 3.689.899, 1972.

h(X) +lw(Y) qX*)+log(Y)
[4] -L,-“Construction of bounded delay codes for discrete noiseless

channels,” IBM J. Res. and Dev., vol. 26, no. 4, pp. 506-514, July

Ef(X)
_< log(A) =

Ef(X*) *
1982.

[5] A. M. Patel, “Zero-modulation encoding in magnetic recording,”

The last equality follows from (18). Note that equality IBM .I. Res. Dev., vol. 19, pp. 366-378, July 1975.
^,

holds only when p(x) = q(x) = yA--IcX).
[6] B. Marcus, “Factors and extensions of full shifts,” Monats. Math.,

q vol. 88, pp. 239-247, 1979.

HEEGARD et al. : VARIABLE-LENGTH STATE SPLITTING WITH APPLICATIONS TO ARC CODES 777

[7] R. Adler, J. Friedman, B. Kitchens, and B. H. Marcus, “State
splitting for variable-length graphs,” IEEE Trans. Inform. Theory,
vol. IT-32, no. 1, pp. 108-113, Jan. 1986.

[S] E. Zehavi and J. K. Wolf, “On run-length codes,” IEEE Trans.
Inform. Theory, vol. IT-34, no. 1, pp. 45-54, Jan. 1988.

191 C. D. Heegard, “A pair of Information theoretic lemmas with _ _
application to runlength coding,” 25th Ann. Allerton Conf. Com-
mun.. Contr.. and Comout.. Allerton. IL. Sept. 30-Oct. 2, 1987.

[lo] G. S. Dixon; C. A. French and J.’ K.’ Wolf, “Results involving
(D, K) constrained M-ary codes,” IEEE Trans. Magn., vol. MAG-
23, pp. 3678-3680, 1987.

[ll] A. Gallopoulos, C. D. Heegard, and P. Siegel, “The power spec-
trum of runlength-limited codes,” IEEE Trans. Commun., vol.
COM-37, no. 9, pp. 906-917, Sept. 1989.

[12] I. Csiszar, T. Cover, and B.-S. Choi, “Conditional limiting theorems
under Markov conditioning,” IEEE Trans. Inform. Theory, vol.
IT-33, no. 6, pp. 788-801, Nov. 1987.

[13] J. Justesen and T. Hoholdt, “Maxentropic Markov chains,” IEEE
Trans. Inform. Theory, vol. 30, no. 4, pp. 665-667, July 1984.

[14] R. Karabed, A. Khayrallah, and D. Neuhoff, “The capacity of
costly noiseless channels,” IBM Res. Rep. RJ 6040, Jan. 1988.

[15] B. Marcus and R. Roth, “Bounds on the number of states in
encoder graphs for input-constrained channels,” IEEE Trans. In-
form. Theorv, vol. 37. no. 3. vt. II, DD. 742-758, May 1991.

[16] “J. Ashley and P. Siegel, “A note- on the Shannon capacity of
run-length-limited codes,” IEEE Trans. Inform. Theory, vol. 33, no.
4, pp. 601-605, July 1987.

[17] F. Gantmacher, The Theory of Matrices, vol. II. New York:
Chelsea, 1959.

[18] R. Karabed and B. Marcus, “Sliding block coding for input re-
stricted channels,” IEEE Trans. Inform. Theory, vol. 34, no. 2, pp.
2-26, Jan. 1988.

[19] R. Blahut, Principles and Practice of Information Theory. Reading,
MA: Addison-Wesley, 1972.

