
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-31, NO. 6, NOVEMBER 1985 121 

Rate Distortion when Side Information 
May Be Absent 

CHRIS HEEGARD, MEMBER, IEEE, AND TOBY BERGER, FELLOW, IEEE 

Abstract--The problem is considered of encoding a discrete memoryless 
source when correlated side information may or may not be available to the 
decoder. It is assumed that the side information is not available to the 
encoder. The rate-distortion function R( D,, D2) is determined where D, 
is the distortion achieved with side information and D, is the distortion 
achieved without it. A generalization is made to the case of m decoders, 
each of which is privy to its own side information. An appropriately defined 
D-admissible rate for this general case is shown to equal R(D) when the 
side information sources satisfy a specified degradedness condition. Ex- 
plicit results are obtained in the quadratic Gaussian case and in the binary 
Hamming case. 

I. INTRODUCTION 

I N A CELEBRATED PAPER Wyner and Ziv [l] ex- 
tended rate-distortion theory to the case in which side 

information is present at the decoder. They knew from 
Slepian and Wolf’s earlier treatment of distortionless cod- 
ing of correlated information sources [2] that each cell of 
the encoder’s partition of the set of typical source se- 
quences should consist of widely dispersed elements. 

Suppose the side information failed to reach the decoder 
in the Wyner-Ziv problem. Then the decoder would know 
only the partition cell index. Because the elements of the 
cell are so widely dispersed, this knowledge would be 
virtually useless for reproducing the source output. This 
contingency has led us to consider the rate-distortion prob- 
lem for cases in which it is not known whether side 
information will be present. An equivalent formulation of 
this problem has two decoders; one of these receives the 
side information, and the other does not (cf. Fig. 1). 

We determine the rate-distortion function R( D,, &,), 
where D, is the distortion achieved with the side informa- 
tion, and D, is the distortion achieved without it. This is 
accomplished by proving both a source coding theorem 
and its converse. We also generalize to cases in which there 
are m decoders, each of which is privy to its own side 
information. An appropriately defined D-admissible rate 
for this general case is shown to equal R(D) when the side 
information sources satisfy a specified degradedness con- 
dition. Explicit results are obtained in the quadratic 
Gaussian case and the binary Hamming case. 
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Fig. 1. Coding system. 

II. PROBLEMSTATEMEN'TANDTHEOREMSTATEMENI 

Let (!%, g’, p(x, y)) be a discrete memoryless 2-source 
pith generic random variables X and Y. For i E {1,2} let 
3, be a reconstruction alphabet and let 

di: .3-x zfi + [o, co) 

be a distortion measure. An (n, M, D,, D2) code consists of 
an encoder 

f: T-%“-+ {O,l;..,M- l} 

and two decoders 

g,: {o,l,**~,M- l} XV%&; 

g,: {O,l,-, M - 1) + !Q. 

The expected distortion D = (Dl, D2) for the code is 
given by 

D; = Ed,(X, sfti) = E$d;(X,, &), i = 1,2, 

where 

-4 = sMxh y> 22 = g,(m)). 
The rate R is said to be D-admissible if for every e > 0 
there exists for some n an (n, M, D, + c, D, + 6) code 
with n- 1 log M I R + E. We shall determine the rate-dis- 
tortion function R(D,, D2) = R(D) defined by 

R (0) = inf { R : R is D-admissible} . 

Define 

R,(D) = Fig b(X; W) + 1(X; UIY, fJ’>], 

where P(D) is the set of all random variables (W, U) E w 
X % jointly distributed with the generic random variables 
(X, Y), such that the follbwing conditions are satisfied. 

1) Y 8 X@( W, U) is a MFrkov string. 
2) There ezist functions X,(W, U, Y) and am such 

that Ed,(X, X,) I D,, i = 1,2. 
3) 191 I 131 + 2 and Ia/) 2 (I.%1 + 1)2. 
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Theorem 1: R(D) = R,(D). The decoders are defined by 

Proof: The proof of Theorem 1 is divided into two 
parts. The inequality R,(D) 2 R(D), which says that 
R 0( D) is D-admissible, is proved in Section III. Then the 
converse, R,,(D) 5 R(D), is proved in Section IV. 

and 
g&f(X), Y> = d(d’(L J, Y>, Y) 

dfw = 44m 

Remark: The informed decoder g, is faced with a 
Wyner-Ziv problem, while the uninformed decoder g, is 
faced with an ordinary rate-distortion problem. Therefore, 
our prescription for calculating R,(D) must reduce 
accordingly in the appropriate special cases. In this regard 
note that if only the informed decoder were present, then 
no loss of generality would result from setting W  = 
constant, thereby reducing the task of calculating R,(D) 
to minimization of I( X, UlY) over all U such that 
Y 8 X-eU and there exists X( U, Y) satisfying Ed,( X, 2) 
I D,. This is the prescription [l] for the Wyner-Ziv 
rate-distortion function, R w-z( Dl). Similarly, if only the 
uninformed decoder were present, no loss of gene:ality 
would result from setting U = constant and letting X(W) 
simply equal W. These steps reduce R,(D) to the ordinary 
rate-distortion function R(D,), namely, the minimum of 
1(X, 2) over all X such that ED,( X, 2) 2 D,. It is clear 
that R,(D,, D,) 5 R,-,(D,) + R(D,), in general. The 
question of whether or not there are situations in which 
equality holds when both R ,,,,- z( Dl) and R( D2) are posi- 
tive remains to be investigated. 

We shall now describe a procedure for randomly con- 
structing the maps a, a’, b, b’, c, c’, d, and d’ such that 

.-l log M I 1(X; W) + 1(X; UIY, W) + .z 

and 
Ed,( X, gi( X)) I D; + c 

for n sufficiently large. This will imply the existence of an 
(n, M, D, + e, D, + E) code with M  satisfying the above 
inequality, thereby allowing us to draw the desired conclu- 
sion that R,,(D) 2 R(D). 

Let 6 > 0 be a small positive number to be specified 
later. In what follows we shall adopt the notation and 
conventions of Csiszar and Kiirner [3]. Let Trw18 be the set 
of S-typical W-vectors with length n. Choose vectors W,, 
1 5 i I M,’ - 1, independently, according to a uniform 
distribution over TLnw18. For each such W, choose vectors 
UiJ, 1 I j < M; - 1, independently according to a uni- 
form distribution over T~u,,ls ( Wi). 

III. ADMISSIBILITY 

We begin the proof that R,(D) 2 R(D) by fixing E > 0 
and choosing (W, U) E P(D). Next we specify the do- 
mains and ranges of some functions a, a’, b, and b’, which 
will be used to describe the encoder, namely, 

a: LFn + {O,l;.., Md - l} 

a’: {O,l;.., Md - l} -+ {O,l;.., M, - 1) 

b: 3” x {OJ;.., M; - l} + {OJ;.., M; - 1) 

b’: {O,l;..,M; - l} + {O,l;..,M, - l}. 

For each x E TrxI,, if a value of 1 I i s M; - 1 can be 
found such that W, E T~w,,16(x), set a(x) = i and let w, 
denote the value assumed by &.. Otherwise (i.e., if x P Trxls 
or W, 6? T[“w,xlB(~) for every 1 I i I M; - l), set a(x) = 
0. If a(x) = i > 0 and (x, w,) E T,“’ w,s, look for a value 
ofl<j<M;- 1 such that qj E TFulx, w18(x, w,) and set 
b(x, i) = j; otherwise, set b(x, i) = 0. Next, choose the 
maps a’ and b’ randomly over the set of all maps from 
(0, 1,. . .> Mi - 1) to (0, 1;. ., MO - 1) and from 
{O,l,. . -> M; - 1) to {O,l;.., Ml - l}, respectively, that 
partition the domain into “equal’‘-size subsets (often re- 
ferred to as “bins”). For example, in the case of a’ we 
require 

I [{i: a’(i) = k}l I 

The encoder f( .) is defined by formula for every 0 I k I MO - 1. 

f(X) = 1+ JM,, 

where 

I= a’(a(X)) J = b’(b(X, a(X)). 

(Note: M = MOM,, and I and J can be calculated uniquely 
from f(X).) Similarly, we specify the domains and ranges 
of the functions c’, c, d ‘, and d, which will be used to 
describe the two decoders, namely, 

c’: {O,l;-, MO - l} + {OJ;.., M; - l} 

c: {OJ;.., M,‘- l} + .%?; 

d’: {OJ;.., MO - l} X {O,l;*., Ml - 1) x g’” 

-+ {OJ;.., M,‘- l} x {OJ;.., M; - l} 

d: {O,l; . ., M; - l} x {O,l; . ., M; - l} x ?V’” -+ S?;. 

The decoding function g, = d( d ‘( .), .) is constructed by 
specifying d’ and d as follows. (The construction of the 
simpler decoder function g, will be discussed subse- 
quently.) For each (I, J, y) E (0, 1; . +, MO - l} x 
{O,L. . .> Ml - 11 x T/k& search for a unique pair (i, j) 
E (1;. *, M; - l} x {l;.., M[ - 1) such that a’(i) = 
I, b’(j) = J, W, E Tf,,,,&y) and qj E T~u,r,wl,( y, w). 
If such a pair exists, set d’(I, J, y) = (i, j); otherwise, set 
d ‘( I, J, y) = (0, 0). Finally, for each (i, j, y) E 
(1,. . .> MO - l} X (1; .., Ml - l} X TryI such that 
(6 v/3 Y) E qL,u.Y,s’ define d(i, j, y) to be the vector 
$i E .??i” whose kth component is X1( W,k, Ul,k, yk), where 
X1( .) is the function referred to in 2) of the definition of 
P(D). Otherwise, set d(i, j, y) = constant E !?‘;. 

The construction of g, = c( c’( * )) parallels that of g, in 
the special case in which Y is a degenerate random vari- 
able, say Y = constant. In this simple case the random 
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variables that play the role analogous to that of lJj in the provided R{ = n  ~ 1  log, M; 2 I( X, U] W) + 27 and n 2 
construction of g, also are degenerate, so they are :xcised 
from the argument. In the last step 2z replaces Xi. We  

n,(y, 4. 
Next, 

omit the details. 
The distortion achieved by decoder g, can be bounded 

from above as follows: 

Pr(C”JA n B n G) 

Ed,(X, Xi) 2 Pr(F)(D, + SD,,) + Pr(F”)D,, 
= Pr Cc u  Dij, u T; u  IJ C, 

( i#i, 

I D, + (6 + Pr(F’))D,,, U U DlojlA n B n G, i,, j. 

where D,, =  max (x, ?)dl(x, a) and F is the event that the 
i #A 

encoding and g,-decoding operations never involve any i, =  a(X) j. =  b(X, a(X)) 

of the “otherwise” contingencies cited above and result in where 
an (i, j) pair for which (Y, X, W i, q.j) E Try, x, w, U1,. That 
is, 

c, = { K E TI”,,., ,(Y>, a’(i) = a’(i,)}, 

F==GnAnBnC, Dl, =  { Qj E T,“,,Y, W] ,(K Y:>, b’(j) =  b’(jo)}, 

where and 

G = {(xi y> E yY,Y,,} G = (( y, x, w,g qio) E T{Y. x, w. U],) . 

A = {a(X) #  0}, B = {b(X, a(X)) f 0} Therefore, 

C = i d’(a’(a(X)), b’(b(X, a(X)>), Y) Pr(C”(A n  B n  G) 

= (a(x), b(X, a(x)>) =  (jo, jo> 
I Pr C.’ U D.’ ( lo,o u  GIA n B n  6  io, joj 

such that (Y, X, W ;,, UiD,,,) E T,‘k, x, w, u18]. + “c Pr (CJA n  B n  G  n  C,,) 
iii, 

It will suffice to show that P(F”) + 0  as n --) cc for 
a’(t)=d(iO) 

+ c Pr(D,“,jA n  B n  G  n  C,, n  Di,,). 
i +j0 

exceeding 1(X; W) + I( X, U (Y, W) by less than e. We  h’(,/)=Jf(h) 
have 

Pr (F“) =  Pr (G’ U A” U B’ U Cc) 

I Pr(G”) + Pr(A’]G) + Pr(B’]A n  G) 

+Pr(C’]A n  B n  G). 

By the law of large numbers Pr(G’) < e’/5, for 
n,(k 4 

i 

MA-1 

P&W) = Pr ;?I { U: E T,‘wixl,(X>} IG 
i 

= (1 - Pr(K E T,T~,x,~(X)IG))~~-~ 
and 

Pr ( w, E TI”w,&) IG) 

> 2-fl[1(x; ‘+‘)+?I, where y -+ 0 as 6 + 0. - 

Thus, using (1 - x)J’ < eex.” for x, y > 0 and requiring 
R; E n-i log, M,’ 2 1(X; W) + 2y uniformly in n, we 
deduce that 

Pr(A’IG) I e  
-(M6-1)2-“[“X.W’+YI < c,,5 

for n 2 n,(y, 6’). A similar argument shows 

Pr ( BCIA n  G) c 6’15  

We now invoke the familiar result (cf. Wyner [4] or 
Berger [5]) that if 

Y0X0(W, u) (1) 

Pr((K Y) E T(ky~J 4 1 asn+cc, (2) 

n> and 

pr ((K To1 (i,,,) E TI”,, w, ,:I,) + 1 as n + co, (3) 

then 

asn-,co. 

In this case this result implies that for n 2 n,(6, E’) 

Pr (Cf; u  DI’, u  TJA n  B n  G, i,, j,) -c e//10. 

Also, for i f i, 

my lT&,y18( Y> I 
Pr (C,JA n  B n G n C,,) I YEqY1a 

ITr”w,,l 
5  2-n[l(Y; W I--Y1 

Similarly, for j #  j, 

Pr( D,,IA n  B n  G  n C,, n  DlojO) 
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Thus 

provided n 2 n,(y, E) and 

R, = n-l log MO 2 nP l log M; - Z( Y; w) + 2y 

= R; - Z(Y; W) + 2y 

R, = &log M, 2 ,-l log M; - Z(Y; U]W) + 2y 

= R; - Z(Y; UlW) + 2y. 

Temporarily suppose that decoder 2 also was provided 
with side information in the form of another source {Z,} 
jointly distributed with {(X,, Y,)}; previously, we had 
been considering only the degenerate case Z = 0. Then an 
argument paralleling that given above for decoder 1 would 
yield the analogous bounds 

R, 2 R; - Z(Z; W) + 2y 

R, 2 R; - Z(Z; VlW) + 2y, 

where R, and R; are defined in the obvious way, V is 
another auxiliary random nvariable satisfying (Y, Z)e 
XGP( W, U, V) and Ed,( X, X( W, V, Z)) I D,. The overall 
rate now is R = n- ’ log M = tip1 log M,$Z,M2 = R, + 
R, + R,. To complete the argument, set 

R; = Z( X; W) + 2y, 

R; = Z(X; U(W) + 2y, 

R; = Z(X; VlW) + 2y, 

Then, the requirements on R,, R,, and R, are 

R, 2 Z(X; W) - min(Z(Y; W), Z(Z; W)) + 4y 

= max (Z(X; w]Y), Z(X; W]Z)) + 4y, 

R, 2 Z( X; UlW) - Z( Y; UlW) + 4y + 4y 

= z(x; UIY, w) + 4y, 

and 

R, 2 Z(X; VlW) - Z(Z; VlW) + 4y 

= z(x; VIZ, w) + 4y, 

yielding 

R 2 max (Z(X; W(Y), Z(X; WIZ)) + Z(X; U(Y, W) 

+z(x; VIZ, w) + 12y. 

Taking 13y < 6, 6 < ~‘/5 and c’ < c/D,,, we conclude 
that for n 2 max (n,(6, E’), nl( y, c’), n,(y, 6’)) we will 
have 

for 

Ed&t, $) < Di + c, i = 1,2 

R < max (I( X; l+‘]Y), Z( X; W]Z)) + Z( X; UIY, W) 

+z( x; VIZ, w) + E. 

In the special case Z = 0 originally under considera- 
tion, we need not introduce V, so we conclude that for any 
(W, U) E P(D) there exists a D-admissible rate satisfying 

R I Z( X; W) + Z( X; UIY, W) + E. 

The inequality R(D) I R,(D) is established. (We gener- 
alized to Z # 0 during the proof both in the interest of 
symmetry and in an attempt to generate appreciation for 
the form of Theorem 2 of Section VII, which treats a still 
more general situation.) 

It remains to establish that the bounds on ]w] and I@] 
specified by condition 3) in the definition of P(D) do not 
affect the minimization. Toward that end we invoke the 
support lemma [3, p. 3101 in order to deduce that $F must 
have 1x1 - 1 letters in order to ensure preservation of 
p( x/w) plus three more to preserve the constraints on D,, 
D, and Z(X, W), so lw] = ].%I + 2 suffices. Similarly, % 
must have 1x1 ]w ] - 1 letters in order to ensure preserva- 
tion of p( x, wlu) plus two more to preserve D, and 
Z( X, U/Y, W). Thus, it suffices to have 

(U( I (XI(W( - 1 + 2 = (X((W( + 1 

i IXl(lXl i 2) + 1 = (1x1 + 1)‘. 

IV. THE CONVERSE 

Toward proving that R(D) 2 R,(D), we first show that 
R o( 0) is convex. Let 

R,(D) = mh[Z(X;WlT) i-Z(X;UIY,W,T)], 

where P(D) is the set of all random variables (W, U, T) 
jointly distributed with the generic source variables (X, Y) 
such that the following hold. 

1) Y 8 X+%( I+‘, I/, T) is a Markov stying. 
2) Th!re exists X,(W, U, T, Y) and X,(W, T) such that 

Ed,(X, X;) I D,, i E {1,2}. 
3) T is independent of (X, Y). 

Note that R,(D) is the lower convex envelope of R,(D). 
Since Z(X, T) = 0 we have Z(X, WIT) = Z(X, W, T). 
Upon defining a new random variable W’ = ( W, T), we 
see that R,(D) 2 R,(D). Thus R,(D) lies on or below its 
lower convex envelope, so R,(D) must be convex. 

We now shall show that if an (n, M, D,, Dl) code exists, 
then 

n-l 1ogM 2 z(x; w) + z(x; UIY, w) 

for random variables (W, U) E P(D). If we define .Z = 
f(X), then 

nR = log it4 2 H(J) 2 Z(X; J) 

= z(x; J, Y) - z(x; Y/J) 

= 5 [z(x,; J, YIX,) - I(% y/p, ml, 
k=l 

~ where Xi = 0 and XL = (Xi, X,;.., X,-i) for k > 1; 
similarly, Y,’ = 0 and Yz = (Yk+i, Yk+*;. ., Y,) for i < 
n, etc. Since the source is memoryless, X, is independent 
of x,, so Z( x,; J, YIX,) = Z( x,; .z, Y, x,-) 2 
Z(X,; J, Y). Also Y,eX,+(X,, X,, .Z, Yi), so 
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1(X; Y,]J, Y;) = 1(X,; Y,]J, Y;). Thus 

R 2  t’-’ 2  [1(X,; J, Y) - I( X,; Y,lJ, Y;)] 
k=l 

=?I -lkcl [z(x,; J, y;) + I( x,; Y,‘IJ, Yc ?  $)I 

=?l -lk~l[z(xki wk> + ‘txk; uklwk~yk)l~ 

where W, = (J, Y;) and U, = Yl. Note that 
Y, 8 X, e( W,, U,). It follows via standard arguments in- 
voking the convexity of R,(D) that R 2 R,(D) and there- 
fore that R(D) 2 R,(D). This completes the proof of the 
converse, thereby establishing Theorem 1. 

V. THE QUADRATIC GAUSSIAN CASE 

Suppose Y = X + Z, where X and Z  are independent, 
(zero-mean) Gaussian random variables with respective 
variances 0; and 0:. Since the source alphabets .5? and 9 
are no longer finite, a  formal justification of the extension 
of the results to the case at hand is in order. We  omit this 
justification, since it directly’parallel’s Wyner’s [7] exten- 
sion of his work with Ziv [l]. The minimization defining 
R(D,, D2) can be carried out explicitly in this case. Not 
surprisingly, it occurs when U = X + Z, and W  = X + Z, 
with Z, Z,, and Z, all independent, zero mean, and 
Gaussian; i.e., U, W, and Y correspond to observations of 
X via independent channels with additive Gaussian noise. 
Decoder 1 forms the optimum estimate of X given 
(U, W, Y), which is known to be a linear combination of 
the form 

Decoder 2 sees only W  and therefore forms 

It is easy to see that the minimum of Z(X, W) + 
Z( X, UlY, W) subject to E( X - Xi)* =  Di, i =  1,2, occurs 
when 

z(x; w) = z(x; 22) = ;10&:/4) 
and 

z( x; UIY, w) = I( x; ri,lY w> 

where u *( X]Y, W) is the conditional variance of X given Y 
and W. When W  already is known, receiving knowledge of 
Y reduces the conditional variance of X from D, to 

D2u~/(D2 + us). It follows that 

D24 

D, + u; ’ 
D, I u; 

A sketch of R( D,, D2) when CT; = u; = 1 is shown in 
Fig. 2. 

01 

Fig. 2. R (D,, D,) in quadratic Gaussian case when CT,’ = 0, = 1. 

VI. THE BINARY HAMMING CASE 

Now suppose that X is the input to and Y the output 
of a  hypothetical binary symmetric channel (BSC) of 
crossover probability p < l/2. Assume that P( X = 0) = 
P( X = 1) = l/2 and that distortion is measured by Ham- 
ming distance, d(x, 2) = (x + 2) modulo 2. Let the ran- 
dom variable U’ be the result of passing X through 
another BSC with crossover probability /I that operates 
independently of that which connects X and Y, where 
/I I Do = min( p, D2). Let U be the result of passing U’ 
through a binary erasure channel (BEC) with erasure prob- 
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ability e that operates independently of both the aforemen- 
tioned BSC’s. Finally, let W be the result of passing U’ 
through another independent BSC whose crossover prob- 
ability is such that Ed(X, W) = D, (see Fig. 3). 

Fig. 3. Joint distribution of (X, Y, U, W) in binary Hamming case 

It is clear that thenrequirement Ye X++(U, W) is sa$s- 
fied. Moreover, the X,(U, W, Y) that minimizes Ed( X, X,) 
is 

i 

u, if no erasure occurs 
kl= w, if an erasure occurs and D, < p 

Y, if an erasure occurs and D, 2 p, 

and the minimized average distortion that results is 

D, = (1 - e)/? + emin(p, D2). 

For given (D,, D2) and p this equation specifies e = e( ,R). 
When we evaluate Z( X, W) + Z( X, UI WY), it equals 

1 - A@,) + [1 - e(P)] [s(P) - dD2)1, 

where h(x) is the binary entropy function, g(x) = h( p . x) 
-h(x), and p . x = p(1 - x) + (1 - p)x. It follows that 

R(D,, 4) I 1 - h(4) 

+ “/(‘” 11 - e(P)1 [8(P) - dD2)1. 
The minimum is over p E [0, min (p, D,)], and e(P) is 
specified by the above equation for D,. 

We believe that R( D,, D2) may equal the right-hand 
side of the previous equation, but we have not yet at- 
tempted to extend the argument of Wyner and Ziv [l] in 
order to prove that our choice of (W, U) is the optimum 
one in P(D). In the special cases that correspond to 
ordinary rate distortion and to the Wyner-Ziv problem, 
our candidate expression reduces to the known correct 
answer. 

VII. GENERALIZATION TO SEVERAL 
INFORMED DECODERS 

Let (X, yl, g2,. . .7 g,,,, P(X, A, Y,,. . mj Y,)) be a dis- 
Crete memoryless multisource with generic random varia- 
bles X, Y1, Y,; . ., Y,. For 1 I i I m let .‘4$ be a recon- 
struction alphabet and, let 

d,: Xx .$ + [0, co) 

be a distortion measure. An (n, M, D) code consists of an 
encoder 

f: X” -+ {O,l; . *, M - l} 

and decoders g = (g,, g,, . . . , g,) satisfying 

g;: {OJ; * .) M- 1) x g;Q$in, 1’s i I m. 

The expected distortion D = (D,, . . . , 0,) for the code 
(f,g) is given by 

D, = Ed,( X, 2,) = ; kcld;( &, &k), 

where 

The rate R is D-admissible if for every E > 0 there exists 
forsomenan(n,M,D+E)codewithn-‘logM<R+e. 
The rate-distortion function is defined by 

R (0) = inf { R : R is D-admissible} . 

To upper bound R(D) for this generalized problem, we 
must introduce an auxiliary random variable &Jr. for each 
of the 2” - 1 nonempty subsets T c { 1,. . . , m }. In the 
associated generalization of the random coding argument 
of Section III, n-vectors U, will be selected at random 
from Tyu,,,. Decoder i is able to recover correctly the U, 
designated by the encoder with probability approaching 1 
as n -+ cc if i E T. Let 

V,= (U,: Tc S, S # T). 

Before proceeding, we provide verbal interpretations for 
ZJ, and V,. For this purpose let “group T” refer to those 
decoders whose indices belong to T, group T = {decoder i: 
i E T}. 

1) U, is block recoverable only by the decoders in group 
T. That is, U, is the private information that the members 
of group T share only with one another. 

2) V, is the set of all auxiliary random variables that are 
block recoverable by all the decoders in group T and also 
by one or more decoders not in group T. That is, V, = {U,: 
U. E V,} is the common information that the members of 
group T share not only with one another but also with one 
or more outsiders. 

Clearly, (V,, U,) represents the total information shared 
by all the members of group T. In the special case T = { i }, 
Uti, is the information known only to decoder i, Vcij is the 
information decoder i shares with others, and (Vci,, Uci,) 
is the totality of blocks of auxiliary random variables that 
decoder i is capable of recovering. 

Let P(D) denote the set of all discrete random variables 
(U,, 0 # T c (1; .., m}) jointly distributed with the 
generic source variables (X, Y) such that the following two 
conditions are satisfied. 

1) YeXe(U,, p f T c {l;..,m}). 
2) There exists Xj(Vc,l, Ufi,, Y) such that Ed,(X, &) 

I Di, 1 I i I m. 
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Theorem 2: R(D) 5  R,(D), where We  shall show that n-l log M  2 R,(D). 

R,(D) = min c maxl( X; U,]Y, V,). 
P(D) 0#7-C{l,~.~,rn} lCT 

Proof: One may employ a multiterminal random cod- 
ing argument that, albeit involved, nonetheless can be 
considered relatively straightforward by today’s standards 
[3]. In the interest of conservation and simplicity, we omit 
the details. 

We  have not been able to prove the converse of Theorem 
2 for the general case. The special case in which D = 0  is 
subsumed by a theorem of Sgarro [6]. In that case it 
suffices to set U(i,..., m) = U and U, = constant for all 
other values of T. Then, Theorem 2 yields R(D) s 
maxi H( XIYi), which Sgarro has shown to be tight. 

In the case in which the generic variables of the multi- 
source satisfy the degradedness condition 

XOYlOY,O . . . 0Y,, 

we can show that R(D) = R,(D). First, let us note the 
simplifications that result from said degradedness. If i <  j 
then decoder i can block-recover any U, that decoder j 
can recover. This implies that there are only m nontrivial 
auxiliary random variables, namely, Uil,, Ut1,21, . . . and 
U{l,..., m). For simplicity of notation we denote these subse- 
quently by IV’,, W,, . * *, and W,, respectively. It is easy to 
see that for 1 I i 4  m 

q,..., l) =  (u’;+,,. . . >  w,) 

( v{i), u{i)) =  ( wiyi, wI+l,. ’ ’ > wm>’ 

It follows that in the degraded case 

R,(D) = min 2 1(X; W ily, W i+l,.. -2 w,), 
‘CD) is1 

where P(D) is the set of all W  jointly distributed with 
( X, Y) such that 

1) YeXeW. 
2) Th!re exists &Wi, W i+l,. .., W,, Y) such that 

Edi(X, X,) I Di, 1  I i <  m. 
In deducing this simplified form of R,(D), we have used 

the fact that the degradedness condition and condition 1) 
together imply that the maximum of I( X; W,l 
‘;, Jy+p.. -9 W,) over j I i occurs for j = i. 

Remark: To imbed the problem treated in Sections II 
and III into the more general problem currently under 
consideration, make the following associations: m = 2, 
Yi = Y, Y, = constant, W, = U, and W, = W. 

Theorem 3: For the degraded multisource with 
XOY1eY,O . . . eYm, we have R(D) = R,,(D). 

nR = log M  2 H(J) 2 I( X; JIY,) 

= z(x; J, Yl, Y2; * .) Ym-,lYm> - w; Ymp,IJ, y,> 
-z(x; Ymp,IJ, Y,-1, Y,) - . . . 
4x; YJJ, yz,..., y,> 

= 2  [Z(&; J, Yl, y2,..., Ym-,lYm,x-) 
k=l 

Since (X,, Y,, k) is independent of (XL, Yfi;, k, Y,‘, k), we 
have 

I( x,; J, Yl, y2,. . ., y,-lIY,> x-1 

= z(x,; J, yl, y,,‘*‘, y,,-l, y;, y,‘, x-‘y,,,) 

2  I( x,; J, yl, y2,’ “> y,z-l, y,l 3  y;ly,,,,k>~ 

The Markov string 

Y m-l,k~(Xk,Ym,k)~(X~,Xkt,J~~~l,k~~,k~Y,:,k) 

implies 

I( x; y,-,,,<IJ, y;-1, K,) = I( xk; y,-l,,IJ> y;-l, y,,>. 

More generally, for 1 5 i 5 m - 1  the Markov string 

- Icxk; y,-,,kIJ, K-1, Y,,> 

- I( xk; y,,-,,kIJ~ G-2, ‘~1, %,> 

Proof: From Theorem 2 we know that R(D) I 
R,(D). Givenan(n, M, D)code,let J =f(X) denote the - Z(X,; Y,,,]J, Y;, Y2,..., Ye,)]. 
output of the encoder. Let Y, = (Y,J, 1  5 j < n), qlk = 
(Y,i, 1  <j < k) and Ylfk = (Y,j, k <j I n); whenever Again, the first negative term in the summation may be 
no ambiguity results, contract notation from Y:,‘, to I$‘. canceled by a portion of the positive term immediately 



734 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-31, NO. 6, NOVEMBER 1985 

preceding it. Proceeding in this manner yields 

+I( x,; y:(y,, k, J, yc > y2?’ ’ ’ 3 ‘,>. 
Degradedness gives the Markov string 

ym, keYA--1.k ++( &, J, y;-l, y,- > y,+)> 

which implies that 

Similarly, degradedness yields 

which implies that 

2 I( x,; y;-3, y,‘-,IYm-2,k, J, 
y;-2, q-1, Cl, y,- 3 y,‘). 

We continue iteratively in this vein until finally observing 
that the Markov string 

(‘2,k, q,k,‘.., ym,k)eyl,kexk~ ‘2 

YIP, YF, Y+ 2 ) 

implies 

1(x,; y:ly,,,, J, y;, y2,*‘., ‘,n) 

2 1(x,; y;Iy,&, J, yl-, y;, y:,’ ’ 

Thus, if we set 

K-2, k = (Y&3, C-2) 

. . 

W l,k = Y:, 

we may write 

R 2 ; kcl [ltxk; Wm,klYm,k) 

I 

+ Icxk; wm-l,klym-l,k, wm,k> 

+ Icxk; Wm~2,klYm-2,k, Wm-l,k, wm,k> 

‘* k=l i-1 

Observe that 

(q,,, 1 I i 5 m)eX,0(w,,, 1 < i I m) 

=(J,Y;)Y:,Y~,Y:,...,Y,-,Y,+), 

so the W;? k satisfy 1) in the definition of P(D) for each 
1 5 k I n. Also, 

contains (J, Yi), which is the totality of information avail- 
able to decoder i. vence Xi, k( Wi, k,. . . , Wm,.k, r/;, k) exists 
such that Edj( X,, X,, k) I Di, k, where Di, k is the average 
distortion with which decoder i reproduces X,. It follows 
that 

where D, = (D, k,. . . , D,, k). An argument similar to that 
employed in Section III shows that R,( .) is convex, so 

R 2 R, = R,(D), 

and Theorem 3 is proved. 

The degradedness condition x%Y,eY,% ... 
8 Y, need not be physical. Also, R(D) clearly depends on 
p(x, y) only through its second-order marginals { p(x, y,), 
lsilm}. 
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