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V to reach cell h and simplifying we obtain the following.

(f-s)P+(h-1l)=(i- 1) 6 ... (1)
Now *9is stored in cell 1 + (g - 1)6, andhenceh = 1 + (g -

1)6. Substituting 1 + (g - 1)6 for h in (1) we obtain (f - s)v = (i
- g)6. But by design, (f - s)v * (i - g)6 unlessf = s and i = g.
Hence, 4{ = (1 and 'I = 'i1 and h = l + (i - 1)6.
Now tis stored in location (i - 1) mod s in the control RAM of

cell 1 + (i - 1)6. Recall that along with ai, we insert the address (i
- 1) mod s. Hence when ai5 reaches cell 1 + (i - 1)6 the address on
its address line is (i - 1) mod s and so ai is activated.
We can similarly show that ais meets a 42 control signal in cell n +

(i - 1)6. A '2 control signal is stored in location (i - 1) mod s of
this cell and hence ais is deactivated here. So ais is active in cells
whose indices range from 1 + (i - 1)6 to n + (i - 1)6. C:
Having identified the cells in which ais is active, we will now

establish that the product term ai5b5j is added to ciy.
Lemma B.3: Vs, ais and bsj meet in cell 6(i - 1) + j.

Proof: ais is inserted at time to + (s - l)v + (i - 1)6 and b5j is
inserted at time to + (s - 1)v - (j - 1). ai reaches cell ] + 6(i -
1) at time to + (s - 1)v + 2(i - 1)6 + (j - 1) and bsj reaches the
samecellatto + (s - 1)v - (j - 1) + 2[6(i - 1) +-j - l)] which
simplifies to to + (s - l)v + 2(i - 1)6 + (j - 1).
From Lemma B.2, ais is active in cell 6(i - 1) + j. Now cij is

stored in location (i - 1) mod s of this cell which is the address on its
address line when ais and bsj meet. H
From Lemma B.3, we can assert that cij has accumulated at least all

the innerproduct terms aisb5s, s = 1, , n. To assert that cij =
Es-l as5b5j we must ensure that c11 is only updated with the correct
product terms. We next show that this indeed is the case in the
following Lemma.
Lemma B.4: Letp * i. When apq visits cellj + (i - 1)6 it does

not contribute any product term to ciu.
Proof: c,; is stored in location (i - 1) mod s of cell j + (i -

1)6. The address propagating in the array along with apq is (p - 1)
mod s. If(p - 1) mods * (i - 1) mod s then cij cannot be updated.
Therefore, let (p - 1) mod s = (i - 1) mod s and this in turn
impliesp - i = -ys.NowO < IP- il < nandhence0 < -'ysj < n.
Let h =] + (i - 1)6. Substituting p - ys for i in h we obtain the
following.

h=(p-l)6-y6s±j ... (1).

Case 1: y > 0. This implies 'y6s > n as s = rn/6]
Therefore, j - 1 - y6s < 0 and hence, h < 1 + (p - 1)6.

Case 2: 'y < 0. This implies - y6s . n and hencej - -y6s >
n. So h > (p - 1)6 + n.

From the above two cases we therefore conclude that apq is not
active when it visits cell j + (i - 1)6. Therefore, it does not
contribute any product term to cij.

Theorem A.2: ci1 = Es77 aisbsjS3
Proof: From Lemma B.3 and Lemma B.4. S
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Row/Column Replacement for the Control of Hard Defects in
Semiconductor RAM's

TOM FUJA AND CHRIS HEEGARD

Abstract-We describe and analyze row/column replacement, the
technique currently used to control hard cell defects in semic'onductor
RAM's during manufacture. This strategy is shown to be asymptotically
ineffective; it is demonstrated that this ineffectiveness may become a
limiting issue for very large memory arrays.

Index Terms-Error-control coding, hard defects, RAM's, redun-
dancy, reliability, row/column replacement, yield improvement.

I. INTRODUCTION

A semiconductor random access memory (RAM) -i a storage
device consisting of many binary memory cells, each- capable9bof
storing one bit of information. These cells are generally laid out as
one or more arrays; every bit in the memory is addressed as a row/
column intersection or as a row/column/array intersection.
A hard defect in a RAM is one or more consistently unreliable

cells. Such defects are usually caused by an irnperfection in the
semiconductor material -and take the form of "stuck-at" cells; that is,
the same value is read from the afflicted cell(s) regardless ofwhat had
been written.

Hard defects usually occur in one of three ways; row failures,
column failures, and individual cell failures. Row and column
failures occur when every cell in an entire row or column becomes
unreliable; this is usually caused by a defect in a row/column enable
line or in a row/column sensor. Individual cell failures are isolated
defects which do not affect more than one bit of memory.
The technique widely used to control hard defects during manufac-

ture is row/column replacement. With this method, extra rows and/or
columns of memory cells are placed in each array and are switched
into use to replace rows or columns which contain hard defects [1]-
[6]. Previous analyses of row/columnn replacement have demonstrated
impressive yield improvements when this strategy is applied to 4K
[2], 64K [2], [4], and 256K [1] RAM's.
Our approach differs from published results in that we examine the
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asymptotic effectiveness of the row/column replacement strategy
(i.e., its effectiveness as the array size grows unbounded). In doing
so, we demonstrate that this strategy is effective for the current
generation ofRAM's only because of the very small expected number
of defects in any memory array. However, our results indicate that
for very large memories, where the expected number of defects is not
trivially small, the asymptotic ineffectiveness of the row/colump
replacement strategy may become a dominant factor.

The figure-of-merit in evaluating this strategy will be bounds on
the yield yo, the fraction of chips containing a potentially correctable
pattern of hard defects. This figure is in fact optimistic, since there is
no evidence that the algorithms currently used to switch in redundant
rows and columns are optimal. (By an "optimal" algorithm we mean
one which produces a defect-free chip every time it is possible to do
so.) However, we will see that even if we assume that the algorithms
are optimal, the row/column replacement strategy can be a most
ineffective one.

Finally, in our analysis we will consider row/column replacement
for controlling only individual cell defects. There are two reasons for
this; first, individual cell defects are the dominant defect type.
Second, row/column replacement seems a reasonably efficient means
of controlling defects which corrupt an entire row or an entire
column. On the other hand, it is heuristically unsatisfying to replace
an entire row or column because of a single bad cell, It is this
heuristic argument that we formalize and prove in our analysis.

II. ANALYSIS OF Row/COLUMN REPLACEMENT

In this section we will examine the effectiveness of the row/column
replacement strategy as a means of controlling individual cell defects.
We will begin by giving a precise model of the strategy. Then, the
asymptotic effectiveness of row/column replacement as the memory
array size grows will be examined.- In addition, we will show where the
asymptotic effects become pronounced. Finally, we will give bounds
on the strategy's yield and will demonstrate with examples the
implications of the analysis.

A. Strategy Model
Consider an nr x n, array of memory cells from which we want to

obtain a kr x kc subarray containing a controlled number of defects
(kr < nr, kc <. nc). We will call such an array an (nr, kr, ne, kc)
code word (Fig. 1). Every memory cell to be used is associated with
an Lr-bit row address and an Lc-bit column address; thus, kr = 2L'
and kc = 2LC. Let N == nrnc be the total number of cells in the array
and L = L4 + Lc. Thus, 2L/N is the fraction of "useable" cells,
i.e., the rate of the code.

Finally, we will assume that each cell in the array is defective with
independent probability p. This assumption is consistent with the
Poisson distribution on hard defects which is usually assumed [1],
[2].

r Ic r Memorg Cells

r1!

nr 4k r= 2 Lr

ne kc= 2Le
Address Ratio: t= r

Code Rate: R kr ke
n r n c

Fig. 1. An (nr, kr, na, k) code word.

then

lim -Yq=0 for all q<p.
L - o0

Proof:.

Proof Pr { U{g contains < qkrk, defects}}
gEG

where G = {All kr X kc subarrays}. Clearly,

IGI r
,)(k

Furthermore, for all g E C,

Pr {g contains ( qkjcc defects}= S ('9c) p1(1 p)krkc-
j=O

( (1 + qkrkc)(t;k) pqkrkc(l .p)krkc(-q)

where we have made use of the fact that for q < p the maximum term
inside the sum is the last, j = qkrkc.

Using the union of events bound

q (k-)n/ knc (1+ qkrkc) kkk jpqkrkc(l p)krkc( q)

21092 (r)+ 1o2 (kc) + lg2 ( krkc ) + 2(l+qkrk± krkc [q og2 P +(l-q)o g2(l -p

B. Asymptotic Behavior
Consider an (nr, kr, nc, kc) code as described above. Let 'Yq be the

fraction of codewords which contain a kr x kc subarray with no more
than qkrkc defects; that is,

'Yq Pr (There exists a kr X kc subarray with < qkrkc defects}.

Theorem: If

lim -=a, <cr< 1 and lim -=R, R>0
L-oo L L-xo N

we can now make use of the inequality [7, p. 310]

1og2 (k) . nhQ-)

where h(x) = -xlog2x - ( - x) log2 (1 - x), the binary entropy
function. This yields

Yq 2 nrh(krlnr) +nch(kc + log2 (1 ± qkrkc) + krkc1h(q) + q 1og2p + (1 - q)log2 (l-p

= 2Nl(l/nc)h(kr/nr) + (I/fnr)h(kc/nc) + (1/N) log2 (1 + qkrkC) - (2L/N)D(qjjp)3

where D(qIlp = q log2 (Ilp) + (1 - q) log2 (1 - qil - p) is the
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divergence between q and p [8]. (D(qjlp), a quantity often used in
statistics and information theory, is related to the two-hypotheses
testing problem.)
Now, log2 nr > log2 kr -- aL. Thus, nr -+ oo as L -+ oo.

Similarly, nc -m oo. In addition, h(x) < 1 for all x, 0 < x < 1.
Therefore,

lim I h kr
L-am Lnc nr
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TABLE I
CRITICAL VALUES OF L FOR VARIOUS VALUES OF R AND p

p

+-_ hj-JC) +- 1og2 (l +qkikc)n-\ncN

D(l[p)= -RD(qljp).
Finally, D(qllp) > 0 for all p and q, 0 < q, p 1, with equality

iff q = p; thus, for R > 0 the exponent limLOO1/N log2 isq i
negativ9 and so

lim Yq= 0. Q.E.D.
L-x*

This result shows that, asymptotically, row/column replacement is
ineffective. As we let the array size grow unbounded in each
dimension, the probability of decreasing the fraction of defects on a

chip goes to zero for any positive rate R (the ratio of memory
capacity to size); row/column replacement cannot produce defect-
free chips, it cannot even produce marginally better ones. The
question arises: Why is row/column replacement used in practice?
To see why row/column replacement has been used with success to

control hard defects, we must answer the following question: How
big does a RAM have to grow before the asymptotic failure
demonstrated above begins to dominate?
To investigate this issue, we will use a slightly simpler model of a

RAM. In this model, we will set n, = n, = n and k, = kc = k (i.e.,
a square array, with a = 1/2). Thus, ki2 2L andR = ki2/n2. Also,
consider the yield for q = 0; thus, we insist that the strategy yields a

defect-free chip.
In our derivation above, we found that

'Yo < 2n2E(L,R)

where

E(L, R) = n 1092 (I -P) +nh(n)n~ ~~~n

=R log2(1-P)+2 h)

This bound reaches a critical point when E (L, R) becomes
negative; once that occurs, the upper bound on -yo becomes very small
very quickly. Thus, it is natural to ask for what values of L and R
does E(L,R) = ,or

R2 log2 (1 -p)+2hQ b)=0

or, equivalently,

L= -2 log2 (l102
] )+2 log2 ) .

-PJ}R

For small p we can make the approximation log2 [1/1 -pI
log2 e. This means the critical point occurs when

2hQJR)
L -2 log2 p+2 log2\~~~~~~~~~~ 109o2 e

2h&fR)
=-6.64 loglo p+2 102log2

elo w2 e

The second term in the above expressilon is a slowly decreasing

function of R; as R increases from 0.7 to 0.95, the second term
decreases from 0.18 bits to -4.1 bits, a loss of only 4.3 bits in the
useable address space. The first term in the expression, however,
removes over six and one half bits from the address space for every
decade increase in p. This indicates that the probability of a defective
cell is critical in determining the limits of row/column replacement.
Shown in Table I are the critical values ofL for rates of 0.70, 0.80,

and 0.95 and for values ofp between 102 and 10-6. This shows that
for RAM's similar to those used today (i.e., RAM's with rates close
to 1.0 and 5 x 10-6 <p < 5 x 10-5) the limit to row/column
replacement effectiveness lies in the four to sixteen Mbit range.
The largest RAM's currently available are 256K; thus, it is not

surprising that the asymptotic ineffectiveness of row/column replace-
ment has not been a factor. However, as RAM's increase in size, or if
the probability of individual cell defects increases as more bits are
squeezed onto a chip, then this asymptotic failure of the row/column
replacement strategy will become a limiting issue.
Of course, RAM's are rarely built as a single array; usually,

several such arrays are included on a chip. However, when n arrays
are placed on a chip, the fraction of defect-free chips is (7yo)" where
yo is the probability of producing a single defect-free array. Suppose,
for instance, we would like to produce a 16M chip at an effective
yield of 0.90. To construct such a chip from 256K arrays, we would
have to fabricate 64 arrays each with a yield in excess of 0.998.
Similarly, if we were to use 16 lM arrays, they would each have to
have a yield in excess of 0.993. This reinforces the notion that, as
chip size increases, so must array size, and the fundamental
ineffectiveness of row/column replacement must still be considered.

C. A Lower Bound on the Yield
The row/column replacement strategy yields a good chip whenever

every defect in an array can be eliminated by disabling rr = nr - kr
rows and rc = nc - kc columns. Thus,

yo = Pr (correctable defect}

= Pr (defect-free kr x kicc subarray}

nrn'
= Pr (defect-free k,
j=0

x kc subarray]j defects}Pr {j defects]

rr+ r,

>, E Pr (defect-free kr
j=0

x kc subarraylj defects}Pr {j defects}.

But

Pr {j defects} = (nrnc) pj(I _p)"rncJ-

and

Pr (defect-free kr x kc subarraylj defects} = 1

for 0 < j. rr+rc.
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Fig. 2. Yields for a 256K array.
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Fig. 3. Yields for a 1M array.

Thus, this provides the lower bound on yo

'e 'Yo= _( r pi(1 _p)nrncJ

D. Some Examples
Figs. 2-5 show graphs of upper and lower bounds on 'yo for 256K,

IM, 4M, and 16M memory arrays with varying amounts of
redundancy. (Note: in each case, the results for a square (a = 1/2)
array are plotted. Thus, rr = rc = r/2 where r is the parameter on

0 -6 -5 -4 1 -3
10 ~~~~~10 10 1

Pr{Cell Defect}

Fig. 4. Yields for a 4M array.

Yield

o-6 -5 -4
10 10

Pr{Cell Defect}

10 -3

Fig. 5. Yields for a 16M array.

each curve.) The lower bound is 0. The upper bound is in fact an
approximation to the upper bounIi developed in Section II-B; it
consists of a "brick wall" function at the critical probability where
E(L, R) becomes negative, i.e.,

f 0 for P>Pcrit

1 otherwise

where Pnt, 1 - 2-[2nh(k/n)l/k2. (The probability of a correctable
defect is negligible for p > Pcrit + e for a very small e.)
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The graphs support the earlier claims about row/column replace-
ment. For a 256K array, the addition of 12 redundant rows and 12
redundant columns provide a yield in excess of 99 percent for p <
10-1. However, for the 16M array, the addition of 40 extra rows and
40 extra columns produces a negligible yield for p > 2.7 x 10-5.

III. CONCLUSION

In this correspondence we show how hard defects can corrupt a
random access memory and describe the current technique for
controlling these defects during manufacture: row/column replace-
ment.
Row/column replacement is asymptotically ineffective as a means

of controlling hard defects. As we let the memory array grow
unbounded in each direction, the probability of reducing the fraction
of defects in the array goes to zero regardless of the fraction of extra
rows and columns available for spare switching.

Finally, the asymptotic failure described above may become a
significant limitation for very large memory arrays.

IV. FUTURE CONSIDERATIONS

As random access memories get larger, a more effective means of
controlling hard defects must be incorporated into their design. One
obvious method is the inclusion of on-chip error correction. From
Shannon's theory we know that for any R < C(p) there exists a (ne,
kc) code with kc/nc >R such that the probability of a decoding error
can be made arbitrarily small. (Here, C(p) = 1 - h(p) where p is
the probability of a defective cell; if the location of the defects are
made available to the encoder or decoder, then C(p) = 1 - p [9].)
Such a code could be implemented on the rows of a RAM and provide
a high degree of protection. This contrasts vividly with the "zero
yield" which row/column replacement offers for large RAM's.

Currently, on-chip error correction is being increasingly consid-
ered as a means of providing protection from so-called "soft errors"
[10]-[13]. These errors are transient in that they can be "scrubbed"
from the system by rewriting the contents of the affected memory
cells. The advisability of using on-chip ECC's to control both hard
and soft errors is something which should be considered.
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A Parallel Algorithm to Compute the Shortest Paths and
Diameter of a Graph and Its VLSI Implementation

BHABANI P. SINHA, BHARGAB B. BHATTACHARYA,
SURANJAN GHOSE, AND PRADIP K. SRIMANI

Abstract-In this correspondence we develop a parallel algorithm to
compute the all-pairs shortest paths and the diameter of a given graph.
Next, this algorithm is mapped into a suitable VLSI systolic architecture
and the performance of this proposed VLSI implementation is evaluated.

Index Terms-Diameter, parallel algorithms, pipelining, shortest
paths, VLSI architecture.

I. INTRODUCTION

Enumeration of shortest paths between all pairs of vertices and
finding the diameter of a graph constitute an important problem in
graph theory and have many practical applications involving some
commodity flow, e.g., in a computer communication network. In a
communication network, the diameter of the network graph is a
deciding factor in choosing the system topology which defines the
interprocessor communication architecture. Further, a knowledge of
the shortest paths between every two processing nodes in a network is
essential to determine dynamically the optimal feasible route from
one processor to the other in order to minimize the communication
delay.

Various algorithms [2]-[51 exist for this shortest path problem;
they are sequential in nature, and the time complexity of the best
known algorithm of this class to compute all-pairs shortest distances
is 0(n5/2) [5] while that of all-pairs shortest paths is 0(n3) where n is
the number of vertices.

The availability of low-cost, high-speed processor arrays during
the last decade gave an impetus for parallelization of programs [12].
With the steep decrease in hardware cost due to the recent VLSI
technology, there is a growing trend toward parallelization of
different existing algorithms and their VLSI implementation [7]-[10],
[13]-[16] to improve upon the execution time at the cost of providing
a larger number of processors. Guibas, Kung, and Thompson [9]
have given algorithms for dynamic programming and transitive
closure problems suitable for VLSI implementation and their ideas
can be readily extended to solve the shortest path problem as well. In
this correspondence we follow a different approach to design a
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