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Focused Codes for Channels 
w ith Skewed Errors 

THOMAS E. FUJA, MEMBER, IEEE AND CHRIS D. HEEGARD, MEMBER, IEEE 

Abstract -Consider a channel with inputs and outputs in the field F, 
(q > 2). We say the channel is skewed on a set ~8 c F,* if the additive 
noise generated by the channel is likely to lie in @; that is, 99 is a set of 
“common” errors. Our concern is the construction of focused codes that 
are appropriate for such channels. We say a code is (t,, t,)-focused on @? 
if it can correct up to f, + t2 errors provided at most t, of those errors 
lie outside of @; the strategy is to offer different levels of protection 
against “common” and “uncommon” errors and so provide novel trade- 
offs between performance and rate. Techniques for constructing focused 
codes and bounds on their rates are described. 

I. INTRODUCTION AND MOTIVATION 

W  HEN A SYMBOL from a codeword over F, is 
transmitted over a channel with additive noise, 

there are 9 - 1 different noise symbols that can afflict the 
transmitted field element. “Traditional” error control 
codes-designed with respect to the Hamming metric- 
treat each of these 4 - 1 possibilities the same, as simply 
representing a generic “error.” 

In many data communication and data storage systems 
there are some errors that are much more common than 
others. Consider, for instance, a random access memory 
system that employs “byte-wide” RAM chips; that is, 
each chip puts out b 2 2 bits at a time. It has been 
suggested that codes over Fp be used for such systems, 
with each chip’s output constituting one element of Fp. 
Now the vast majority of chip failures are single-cell 
failures and so would affect only one bit per byte; thus, 
most of the symbol errors that would confront such a 
code would be one of the b field elements with exactly 
one non-zero bit in its binary representation. Of course, 
there are failure mechanism that can cause multiple bit 
failures-catastrophic whole-chip failures, for instance- 
so we would need to provide some protection against 
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arbitrary errors; however, providing the same degree of 
protection against common and uncommon errors is not 
efficient. 

As another example, consider a modulation scheme 
with a signal space with M  = 2’ signals; assume that data 
is mapped onto the signals using a Gray code so that the 
most likely detection errors cause exactly one bit error. 
Once again, if a code over Fp is used in such a system, 
the vast majority of the symbol errors will consist of 
exactly one incorrect bit. 

The previous two examples illustrate one of the most 
common applications where it becomes desirable to dif- 
ferentiate between two different kinds of errors-when 
we wish to correct single-bit errors using a nonbinary 
code. One of our goals is to extend previous results that 
have described codes capable of correcting all single-bit 
errors and detecting all other symbol errors [l], [2]. In this 
sense our work has much in common with recent research 
by Piret [3] and Boly and van Gils [4]. 

Finally, there are some applications for which the set of 
common errors is not simply the single-bit errors. Con- 
sider, for example, space-borne RAM systems organized 
into b-bit bytes; they are typically afflicted by errors 
falling into one of two categories: either single-bit errors 
or two-bits-adjacent errors. In this case our set of com- 
mon errors would contain 2b - 1 elements. 

In these and in many other applications it is desirable 
to “focus” the capabilities of a code on a class of particu- 
larly common errors. In this paper we begin by deriving 
some simple information theory results for channels ex- 
hibiting this kind of “skewed” behavior. Following that, 
we introduce the notion of a focused code [51, [6], and 
give a technique for constructing them. Finally, we derive 
bounds on the rates of such codes for a given blocklength 
and for asymptotically large blocklength. 

II. SHANNON THEORY FOR FOCUSED CHANNELS 

Consider the following symmetric channel model for 
storage or transmission. A character X E F, is to be 
transmitted and the character Y = X + 2 E F, is re- 
ceived. It is assumed that the random error 2 E Fq is 
independent of the input X, and the probability of error, 
Pr(Z # 0) = E. In a typical model for a symmetric channel, 
the conditional error probability, Pr(Z = zlZ # 0) = l/ 
(q - 11, is uniform over the error values where z E F,* = 
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F, -{O}. We say that a channel is skewed on a subset 
33’ c F,* if Pr(Z E @Z  # 0) > I@/(q - 1). In particular, 
we consider the following distribution for the skewed 
error Z  

Pr(Z= z) = 
i 

l-6, if z = 0; 
41-Y)/WL if zE@; 
6-Y / W ”L ifzE&P 

where 63” A F4* - 9. Here, E is the probability of error, 
and y is the probability that an error lies outside the set 
53, given that an error has occurred. Typically we assume 
that E and y are both very small; thus, the elements of 53 
constitute the “common” errors and the elements of @ :’ 
are the “uncommon” errors. Within each class of errors, 
we assume a uniform distribution. 

We call such an error model the skewed symmetric 
channel @SC) for the common error set 33 c F,*. Note 
that the cases of interest have parameters 0 5 E I (q - 
1)/q and 0 I y I l@cl/(q - 1). We are interested in find- 
ing the Shannon capacity of this channel as a tool in 
understanding the problem of constructing focused codes. 

Theorem I: The capacity of the SSC for the common 
error set 33 c F,* is given by 

C = l- [h(E) + +(r) + Cl- r> log, I@I+ 7 log, l@‘l,] 
where 

h(x) k -xlog,(x)-(1-x)log,(l-x) 

is the binary entropy function. 

Prooc As we know [7]-[9], the capacity is given by 
c = yll” X;Y> 

where Z(X;Y) is the mutual information between the 
input X and the output Y and p(x) is a probability 
distribution on X. In this case, Z(X;Y) = H(Y)- H(Z) 
2 1 - H(Z) with equality if the input distribution, p(x) = 
l/q, is uniform. Finally, to compute H(Z) we note that if 
we define 

0, if Z= 0; 
WA 1, 

i 
ifZE.63; 

2, i fZEgc 
then H(Z)= H(Z, W>= H(W)+ H(ZIW) and H(W)= 
h(c)+ Eh(y), H(ZIW) = l (l- y)log, lB’l+ EY log, l&‘=l. 
This shows the result. 0 

In Fig. 1 we have graphed the capacity of the skewed 
symmetric channel over FzS6 when lgj = 8; this corre- 
sponds to the case when data is stored or transmitted in 
g-bit bytes and the most common errors are those affect- 
ing exactly one bit per byte. We have graphed the capac- 
ity for values of the crossover probability E from 10-l to 
10P3. In addition, we have varied the values of y-the 
probability of an uncommon error given that an error has 
occurred-from 0 (corresponding to a channel in which 
only one-bit-per-byte errors can occur) to 247/255, which 
corresponds to a channel where all errors are equally 
likely-that is, an “unskewed” channel. 

...~.~~ y = 05 
y = 247/255 (Unskewed channel) 

-3 -2 5 
‘ob3c) 

-15 -1 

Fig. 1. Capacity of skewed symmetric channel over FZsh when 191 = 8. 

A question related to capacity will help in the descrip- 
tion of asymptotic bounds on the performance of focused 
codes. Given bounds 04 E<E~, O<y 2 y. what is the 
maximum value for the entropy of the error H(Z)? The 
following two lemmas provide the answer. 

Lemma 1: Let 0 5 y 2 y0 and define 

T(Y) p h(r) +(I- y)log, I@I+ r&s, lg”l 
then I(y) is maximum for 

Proo$ To achieve the inequality dr/dy 2 0 requires 

dl? 
- = log, 
dr 

or y 5 l@‘l/(q - 1). 

Note that log, I.53 I I(y) 5 log,(q - 1). 
Lemma 2: Let 0 I E I E(,, and define 

f(E) A h(c) + d- 

0 

where log, I&? I I< log,(q - 1). Then f(6) is maximum 
for 

qr E=mln qjllfqr . 4 1 
Proo$ To achieve the inequality df /de 2 0 requires 

df - = log, 
de 

or E 5 qr/(l + 49. 0 



Theorem 2: For 0 IE 2 Ed), 0 I y I yo, the entropy 
H(Z) is maximized when 

where 

I-(Y) p h(r) + Cl- r> log, l@l+ dog, WV. 

Proof: Follows immediately from Lemmas 1 and 2. 
Note that when E and y are chosen as indicated, then 
H(Z) = h(E)+ EIXY). 0 

III. FOCUSED CODES-DEFINITIONS AND A SUFFICIENT 
CONDITION FOR THEIR CONSTRUCTION 

In this section we formulate a class of codes that are 
appropriate for skewed channels. We call these codes 
focused codes, and they allow us to provide different levels 
of protection against common and uncommon errors. In 
Section 3-A we develop the notion of focused codes 
capable of correcting a specified class of errors; in Section 
3-B this is generalized to include simultaneous correction 
and detection. Finally, in Section 3-C we briefly compare 
our formulation of focused codes with the codes for 
simultaneous bit-and-symbol correction described in [3], 
[41. 

A. Focused Codes for Correcting Skewed Errors 

For any x E F,” we denote the Hamming weight of x by 
Ilxll; that is, if x=[x~~,x,;~~,x,~,], then 

n-l 
IIXP c b<+J 

i=O 

where l(e) is the indicator function (i.e., l,,(x) equals 
one if x E ~2 and equals zero otherwise) and Fq* is the 
set of nonzero elements of F,. 

More generally, for any set ti c F,* define the J& 
weight of x E F: as the number of components of x that 
lie in & if we denote the &weight of x by I(xI(,,, then 

n-1 

IIxII.d A C ldJ( xi>. 
i=O 

Definition: Let .@ c Fq* be a set of non-zero elements 
of F,. A code that is (t,, t,)-focused on B is a code that is 
capable of correcting up to t, + t, errors provided at most 
t, of those errors lie outside GY. More precisely, such a 
code is a set B of n-tuples over F, with the following 
decoding property. There exists a decoding function f: 
F: + 4 such that f(c+ e>=c for any c E B and any 
e E F,” satisfying the following two conditions: 

1) llell I t, + t,; 
2) llell,,c It,. 

Note that a code that is (t,O)-focused is a “traditional” 
t-error correcting code. On the other hand, a (0, t)-focused 

code is guaranteed only to correct errors in the common 
error set 97. 

The following lemma gives sufficient conditions for a 
set of q-ary n-tuples to form a code that is focused on the 
common set of errors 95’ c F,*. 

Lemma 3: Let B be a set of q-ary n-tuples with the 
following property. For any ci, c2 E B, at least one of the 
following conditions holds: 

1) [ICI - cJl> a, +2t,; 
2) IICI - c,ll+ lb, - c2II.w’. > 4t, +2t,. 

Then B is (t,, t,)-focused on 9’. 

Proot Let &n A {x E FJ: llxll I t, + t,, IIxll,~~ I t,) de- 
note the set of error patterns we want to correct. Then as 
long as ci + e, # c2 + e2 (or equivalently, e, - e2 # c2 - 
cl> for any codewords c,,cz and any e,,e, E gn’,, the code 
will be (t,, t,)-focused on 6%‘. Therefore, as long as all 
differences between codewords lie outside 

A< ~2 {e, - e2: e,,e2 E <} 

the code will be focused. But in fact it is easily seen that 
Act$ c ,a”‘,, where 

Jg p (x: JJXJI 22t, +2t,, Ilxll+ jIXll,@C 5 4t, +2t,). 

Thus the lemma is proved. q 

The implications of this lemma are presented graphi- 
cally in Fig. 2. We can plot every q-ary n-tuple in two 
dimensions by its Hamming weight and its @“-weight. 
The lemma says that as long as no codeword difference 
lies in the shaded region, the code will be (t,, t,)-focused 
on 9’. By comparison, to insure correction of all error 
patterns of Hamming weight t, + t, or less we would 
require that all codeword differences have Hamming 
weight greater than 2t, +2t,; by lowering our require- 
ments we have cut a “notch” in the “forbidden zone.” 
This suggests that rate improvements are likely. 

It’s worth noting that the sufficient conditions given in 
Lemma 3 are not, in general, necessary conditions since 
gfi is often a strict subset of dn. However, they are 
necessary conditions if and only if every element of GP 

13’ -Weight I 

2,,+t2 21, + 2r2 Hamming 
Welght 

Fig. 2. Graphic interpretation of Lemma 3. 



can be expressed as the difference of two elements of 68. 
This means, for instance, that whenever &JC lies inside a 
proper additive subgroup of F,, then the conditions of 
Lemma 3 are necessary and sufficient; this follows from 
the fact that every element in an additive group can be 
expressed as the difference of elements in a coset of that 
group. 

B. Focused Code for Simultaneous Correction and Detection 

In this section we briefly show how the definitions and 
results from the last section can be generalized so as to 
allow simultaneous correction and detection of a class of 
skewed errors. 

Let gn(tl, t,) denote the set of errors that would be 
corrected by a code that is (t,, t,)-focused on 9’-i.e., 
gn’,<t,, t,) p {x E F,“: llxll 5 t, + t,, IIxII,*~ 5 t,}. It is obvious 
that c$(tl, t2) c Fn(t3, t4) if and only if t, + t, _< t, + t, and 
t, It,. 

Definition: For a given n and q, let t,, t,, t,, and t, be 
four integers such that c$JtI, t2) c c$in(t3, tJ. Then we say 
that a code is a (t,, t,)-correcting, (t3, t&detecting fo- 
cused code if it is capable of correcting any error that lies 
in &(t,, t2) and can simultaneously detect any error lying 
in c$t,, tJ. 

We can immediately generalize Lemma 3 to provide 
the following sufficient condition for the construction of a 
(t,, t,)-correcting, (t3, t&detecting code; the proof of the 
generalization is analogous to that of the lemma and is 
omitted. 

Generalization of Lemma 3: Let B be a set of q-ary 
n-tuples with the following property. For any ci, c2 E 6, 
at least one of the following conditions holds: 

1) [(Cl - CJ > t, + t, + t, + t,; 
2) llc, - c~II,~~ > t, + t, +min(t,, t,); 
3) llc, - c,ll+ llc1 - C&c > 20, + t,)+ t, + t,. 

Then 8 is (t,, t,)-focused on @ and furthermore is 
(t,, t,)-correcting, (t,, t&detecting. 

A graphical representation of this generalization is 
shown in Fig. 3; once again, as long as all codeword 
differences lie outside the shaded region, the code will 
have the desired property. 

RC -Weight 

Hamming 

‘I+‘3 r,+t2+t3+t4 Weiyht 
+ max(r *, t4) 

C. A Comparison with Codes Designed with Respect 
to the Minimum Distance Profile 

In previous papers, Piret [3] and Boly and van Gils [4] 
considered the problem of simultaneous correction of bit 
errors and symbol errors. Since this problem was one of 
the prime motivations for the development of focused 
codes, we briefly compare the techniques described in [3], 
[4] with those in this paper. 

The formulation of the bit-and-symbol correcting prop- 
erties discussed in [3]-[4] is as follows. Suppose we wish 
to form a code over F2h (b 2 2) capable of simultaneous 
bit and symbol correction, that is, we wish to differentiate 
in some way between correcting symbols (elements of F2h) 
and bits (l’s and O’s obtained from the binary representa- 
tion of the elements of F*h). Let 7 = {(a,, b,), 
(a,,b,); * ., (a,,,,,b,,y-,)) be a set of pairs of natural num- 
bers such that ai f aj for i f j. Associated with 7 is a set 
E(Y) of 2h-ary n-tuples; x E E(7) if and only if there 
exists an (a,, bi) E 7 such that by puncturing x in ai 
symbol locations one can obtain a vector with at most b, 
l’s in its binary representation. Then a code is referred to 
as scorrecting if it can correct any channel errors lying 
in E(7). 

The difference between the Piret-Boly-van Gils for- 
mulation of bit-and-symbol error correcting codes and the 
formulation embodied by focused codes is due to the 
intended application of each. The codes of [3]-[4] were 
constructed for, channels described by the two-state 
Gilbert model for burst noise-a model for a binary 
channel. In the Gilbert model errors can occur in 
“bursts’‘-occurring when the channel is in the bad state 
-or they can be “random” errors, occurring when the 
channel is in the good state. It is assumed that the bits are 
organized into symbols and that burst errors will be 
corrected as symbol errors while random errors will be 
corrected as bit errors; the Piret-Boly-van Gils formula- 
tion allows for the fact that it is possible to have two (or 
more> random errors occurring in a single symbol. 

Focused codes, on the other hand, are codes for chan- 
nels that are intrinsically symbol-organized, 

It is easy to show that a code that is (t,, t,)-focused on 
the set of single-bit-per-byte errors can be described (in 
the parlance of [3]-[4]) as scorrecting, where 

Y={(t,,min(t,,l)),(t,-l,min(t,+1,3)), 
(tl -2,min(t, +2,5)), 
. . ..(l.min(t,+t,-1,2t,-l)), 

(O,min(t, + t,,2t, +l))}. 
However, it’s important to keep in mind that a (t,, t,>- 
focused code can correct more error patterns than those 
indicated by 97 

IV. CONSTRUCTION OF COMBINED LINEAR 
FOCUSED CODES 

In this section we describe a very general technique for 
constructing focused codes. We begin by describing an 
obvious method for constructing codes focused on the set Fig. 3. Graphic interpretation of generalization of Lemma 3. 



of odd-weight errors; we then alter that method to im- 
prove the rate, and then generalize the result to include 
many different common error sets. 

A. Codes Focused on Odd- Weight Errors 

Suppose we wish to construct a code with blocklength n 
over Fzh that is (t,, t,)-focused on the set of odd-weight 
symbols; that is, the common error set 93’ consists of all 
the elements of F,/, with a binary representation contain- 
ing an odd number of 1’s. (Note that this would include 
the set of single-bit errors.> 

1) The Obvious Technique: A simple way to proceed is 
with a concatenated coding scheme as follows. Start with 
a code over Fzh-1 with minimum distance 2t, + t, + 1; 
then, add an extra bit to each code symbol in every 
codeword so that every symbol has even parity. To see 
that the resulting set of n-tuples over Fzh is (t,, t,)-focused 
on the set of odd weight errors, consider the following 
decoding algorithm. When an n-tuple over F,I, is received 
at the decoder, the parity of each symbol is checked; 
where a parity violation occurs, that symbol is marked as 
an erasure for decoding by the “outer” code with dmi, = 
2t, + t, + 1. This scheme will correct any combination of 
t, + t, errors as long as no more than t, of those errors 
have even parity-and thus must be corrected by the 
outer code without benefit of erasure. This technique 
constructs codes that have rate R,(b - 1)/b, where R, is 
the rate of the outer code. 

2) An Impror;ement to the Obvious Technique: For any 
n-tuple x over Fzh, let b(x) be the binary n-tuple ob- 
tained by taking the mod-two sum of each component of 
x; for example, if x = [0011,0100,1011,1010,1111], then 
b(x) =[OllOO]. Then the technique described in Section 
IV-A-l can be described as follows: Take a codeword 
from a code over Fy-I and add one bit to each code 
symbol so that the resulting n-tuple c satisfies b(c) = 0. 
This technique is something of an “overkill,” since it 
permits us to flag every occurrence of an odd-weight 
error, and to fulfill the code’s “mission” we need only flag 
up to t, + t, odd-weight errors. 

Consider, then, the following construction. Let 4, be 
an (n, nR,) binary code with minimum distance d, = 2t, 
+2t, + 1; let &* be an (n, nR,) code over Fzh-, with 
minimum distance d, = 2t, + t, + 1. To construct a code- 
word from our focused code we first take a codeword 
from &* and add one bit to each code symbol such that c, 
the resulting n-tuple over Fzh, satisfies b(c) E 4,. (Note 
that there are IB,] ways this can be done for a given 
codeword from 6YZ.> 

We can see that the code thus constructed is (t,, t,>- 
focused on $9 by considering the following decoding 
algorithm. Given a received 2’-ary n-tuple r, compute 
b(r); find the codeword x E 8, that is closest to b(r). As 
long as at most t, + t, odd-weight errors have occurred, x 
will be equal to b(c), where c is the codeword that was 
actually transmitted. Mark the locations where x differs 
from b(r) as erasures; strip off the last bit in each code 

symbol and pass the resulting 2”-‘-ary n-tuple plus era- 
sure locations to a decoder for gZ. Such a decoder will 
correct all combinations of t, + t, errors provided at most 
t, of the errors have an even-weight binary representa- 
tion. 

Note that this improved construction technique adds 
nR, information bits to each codeword, when compared 
with the simpler construction of Section IV-A-l. The 
overall rate of this code is R, # b + R,(b - 1)/b. 

B. A Generalization of the Improad Construction Technique 

Here we describe a general technique for constructing 
a code of blocklength n that is (t,, t,)-focused on an 
arbitrary set ~$3 c F $. We call the resulting codes com- 
bined linear focused codes. 

Our construction uses three different block codes to 
form the desired code. The three codes are described as 
follows. 

l &(, is a (b, k,,) code over F, capable of detecting any 
error in 35‘; that is, if we consider &Y as a set of 
b-tuples over F,, then we want g,, to be a set of 
b-tuples over F, such that c0 + e E &0 for every 
cg E &(, and every e E 9. Furthermore, let 

Ho = [ P,,lI,l)] 
be an rg ( = b - k,,) x b systematic parity check ma- 
trix for &o; that is, for any e E ~49 and any c E #a, 

(c + e)H,T= eH,T# 0. 

l 8, is an (n, nR,) code over F,,,, with minimum dis- 
tance d, = 2(t, + t,)+ 1. 

l 4z is an (n,nR,) code over Frk,, with minimum 
distance d, = 2t, + t, + 1. 

We construct a codeword from our focused code as 
follows. Let 

4-q),~,,-~,~,-I 1 E 6 
and 

YIYo,Y,,...,Yn-llE~~ 

be codewords from 8, and 8Z. Note that each xi and 
yi are elements of F,,.,, and $k,), respectively; thus, 
each xi has a unique representation as an r,-tuple over 
Fr, and each yi has a unique representation as a k,,-tuple 
over F,. Let [xi,(],x~,l,’ ’ *) x~,~,,- ,I represent xi and 
[Yi,()> Yl,l,’ ’ ‘> Y~,~,,- ,I represent y,. Furthermore, denote 
the concatenation of these two strings by (y,, xi)--i.e., 

(Yi,Xi)~[yi,O,...,Yi,k,,-l,X;,(),...,Xi,rl,-1IEFpb. 
Then the focused codeword c = [co, cl,. . . , c, _, 1 associ- 
ated with x and y is obtained by setting 

Ci=(Yi,-(Yj,xi)H(T)’ 

That is, each symbol in the codeword is represented as a 
b-tuple over FP; the first k,, p-ary digits in each symbol 
form the corresponding code symbol from y. The last rg 
p-ary digits in each symbol come from multiplying the 
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concatenation of the corresponding symbols from x and y 
by - H,T. 

We claim that the code consisting of all codewords thus 
constructed is (t,, t,)-focused on ~8. This is proved by 
providing a decoding algorithm for the code. 

The key point to understanding the algorithm is to 
recognize that 

Example 2: Once again let the field be all binary b- 
tuples, but this time let the common error set be all 
double errors that are adjacent to one another. In this 
case, the matrix H,, is given by H,, = (1 0 1 . . . 1 0) (for 
even b) or H,, = (1 0 1 . . . 0 1) (for odd b). Once again, 
B, is a binary code and &z is over F2~7m~. 

Example 3: This time, suppose we are interested in 
both odd-weight errors and double-adjacent errors. In 
this case, H,, is given by 

Thus, if no error afflicts a code symbol, we can recover 
the corresponding code symbols from y and X. (It’s worth 
nothing that if H, is not of the form [P,JZ,~,] then the 
previous equality does not hold. More generally, if H,, 
contains an embedded identity matrix, then it is possible 
to concatenate the symbols in such a way that both xi and 
yi can be recovered by multiplication by HT.) 

H=1 ( 0 10 ... 10 0 0 1 0 1 ... 0 1 1 

for even b, or 

The decoding algorithm is as follows. Assume the code 
vector c=[cO,cl;~~,c,-,] is transmitted, where ci = 
(yi, - (yi, xi>HT). Suppose you receive the vector 

H=o ( 10 1 ... 10 0 1 0 1 0 ... 0 1 1 

for odd b, In this case, 8, is a code over F4 and &1 is 
over Fzhm2. 

r=[rO,rl;.. ,r,-,] E Fp”h. 

As before, we assume that ri is represented by the b-tuple 
[ri,o,’ ” ,ri,b-ll, ri,j E F,. F  or each i, 0 I i I IZ - 1, com- 
pute 

C. Some Numerical Results for Combined 
Linear Focused Codes 

If no error occurred in the ith symbol, then, as previously 
noted, di = xi. If, however, the channel imposed a “com- 
mon” error in the ith symbol (i.e., ri = ci + e, where 
e E 63 is an error in our common error set) then di # xi. 
Thus, each occurrence of a common error (or any error e 
for which eHT # 0) will cause the vector d = 
Cd,,d,,. . ., d,-,I to differ from x in another coordinate. 
Now provided that no more than t, + t, such errors occur, 
we can use &i to recover x from d. Furthermore, we can 
then use the location of the common errors, which will be 
indicated by the coordinates where d differed from x, as 
erasures to be used by z??~; in this way, y can be recovered 
and the decoding process is complete. As long as no more 
than t, + t, errors occur, and no more than that t, lie 
outside &?---and thus have to be corrected without bene- 
fit of an erasure-this algorithm will decode correctly. 

In Fig. 4 we have graphed the rates of two focused 
codes for blocklengths between 10 and 100. In each case 
we are assuming that the codes are over F,,,--thus 
corresponding to a communication/storage system with 
&bit bytes-and the focus set consists of those field 
elements with an odd-weight binary representation. (And 
so IL8 = 128.) 

The two focused codes we have considered are com- 
bined focused codes, constructed using the technique 
described in Section IV-A-2 (and generalized in Section 
IV-B). Specifically, we consider a (l,l)-focused code and 

Finally, the rate of the focused code can be easily 
computed from the rates of the three constituent codes. If 
we define R,, R,, and R, to be the rates of #Co, B,, and 
6YZ, then the rate R of the focused code is given by 

R=(l-R,)R,+R,R,. 

Example 1: Let the field be F2h and let the common 
error set consist of all odd-weight errors. Then 

H,=(l 1 1 ... l), 
-~-- (1. 3)-focused code 
---- 4-error correctmg code 

and to compute d you need only take the mod-two sum of 
the binary representation of each received symbol. Since 
H, is a 1 X b matrix, the “inner code” 6, is a binary code 
and the “outer code” &* is a code over F+I. (This is the 
construction techniaue described in Section IV-A-2.) 

i 
.5 11’ ” 11 ” ’ 11 11 11 11 

20 40 60 80 100 
n 

, 
Fig. 4. Rates of (r,,t,)-focused codes and t, + t2-error correcting 

Reed-Solomon codes for (t, = 1, t2 = 1) and (f, = 1, f2 = 3). 



FUJA AND HEEGARD:  F”(‘“SED CODES FOR C‘HANNELS WlTFl SKEWED ERRORS 779 

a (1,3)-focused code; we assume that the outer code in 
each case is a  Reed-Solomon code over F,,, with m ini- 
mum distance 2t, + t, + 1. The  rate of the inner code-the 
binary code with m inimum distance dmin = 2(t, + t,)+ 
l-was determined from a  table of “good” codes [lo]. 
For comparison’s sake we have included a  graph of the 
rates for a  t, + t,-error correcting Reed-Solomon code 
over Fzzh so that it can be  seen what is gained by failing 
to correcting the uncommon errors of Hamming weight 
t, + t,. 

It is seen that the gains are modest  for the (1, H-code; 
for y1= 10  there is a  rate improvement of only 8.3%, and 
as the blocklength increases that improvement vanishes, 
with the Reed-Solomon code actually having a  higher 
rate when n  2  41. For the (1,3)-focused code, the im- 
provement is more impressive; for n  = 14  there is a  35% 
improvement in the rate (from 0.43 from the 
Reed-Solomon code to 0.58 for the focused code), and  
over the entire range of n  the focused code has a  higher 
rate than the Reed-Solomon code. (Although the im- 
provement is insignificant for large n  and would once 
again go  negative if we took n  much bigger than 100.) 

These results reinforce the common-sense idea that the 
more “focused” a  code is-that is, the more error pat- 
terns we avoid correcting-the bigger the payoff in terms 
of rate. This notion is expressed quantitatively in terms of 
asymptotic rate bounds at the end of Section V-B. 

V. BOUNDS FOR FOCUSED CODES 

In this section we compute bounds on  the rates of 
arbitrary focused codes for fixed blocklength and for 
asymptotically large blocklength. W e  also compute asymp- 
totic bounds on  the rates of the combined focused codes 
of Section IV-B. 

A. Bounds for Focused Codes of Fixed Blocklength c + e, # x + e2. 

The rate R of a  code 67  over F, is def ined as R A 
(l/n>log, 141.  F  or a  given blocklength n, nonnegat ive 
integers t, and t,, field F,, and common error set 29, we 
let R,“(t,,t,) denote the highest rate of any code of 
blocklength n over F, that is (t,, t,)-focused on  @ ‘; 

R,* ( t, , t2) 5 sup {R: There exists a  code of rate R and 
blocklength n that is (t,, t2)- 
focused on  99). 

And so 

is a  (t,, t,)-focused 

Corollary to 
log,(j&nII, where 

code with M codewords. 0  

Theorem 4: Rz(t,, t2) 2 1 - (l/n> 

2t, +2t, min(i,4t, +2t, - i) 

M I= c 
i = 0 

c ; 
j = 0 i i(i 

j piiy’I.wJj. 

Theorem 3: R,*(t,, t2) I 1  -(l/n)log,(l&n’,l), where 
fa +f, min(i.t,) , \ , I 

Proo$ Theorem 4  implies that such a  code exists if 

Proofi Let &n 9  {x E F,“: llxll I t, + t,, IIxI(,~~ I t,} be 
the set of error patterns we want to correct. Let 6  be  any 
code that is (t,, t,)-focused on  68. For every codeword 
c E B there is a  region about c containing the I&‘,1 n- 
tuples over F, that would be  mapped onto c by a  decoder 
for 8. Clearly, the volume of all these regions summed 
over the whole code cannot be  greater than 9”; this gives 

us the bound 

which is equivalent to the theorem. 0  

To  provide a  lower bound on  Rz(t,, t,>, we recall some 
notation from Lemma 3; let A&, be  the set of differences 
of correctable errors i.e., 

A&, = {e, - e  2: e,,e2Egn}. 
Theorem 4: For any positive integers n and M  satisfy- 

ing 
(M-l).lA&‘,l <qn 

there exists a  code of blocklength n over F, that has M 
codewords and is (t,, t,)-focused on  @ . 

Proot The proof is by induction on  M; it’s trivially 
true for M = 1. 

So, assume there exists a  (t,, t,)-focused code with 
M - 1  codewords; call this code &,,-,. Furthermore, for 
any q-ary n-tuple c let c + A&M consist of the set ob- 
tained when each element of A&n is added to c; that is, 

c + A&n g  {c + Ae: Ae E Agn]. 
Then  from the union bound 

u  c+A&~ <(M-l).lA&,] 
CE&-, 

and  so by the induction hypothesis 

U c+AG, <q”. 
CEc),)-, 

This means that there exists x E FJ such that 

x@ u  c + Ag7. 
CE8&, 

By definition of A&, then, for any c E 6?,,-, and  any 
correctable error pattern e, and  e,, 

By noting that A&, G  J&, where 
&+{IxEF,:: llxll 5  2t, l t&J Ilxll+ l la9~ 5  4t, +%j 

the corollary follows. 0  

Note that Theorem 3  is an  inequality in the form of a  
“sphere packing” or Hamming bound;  Theorem 4  is simi- 
lar to the G ilbert-Varshamov bound.  



780 IEEE TRANSACTIONS ON ,NFORMAT,“N THEORY, ““I-. 36, NO. 4, JULY 1990 

Finally, it should be noted that if we assume that the 
field we are working over has characteristic two (i.e., 
q = 2b for some b) then the previous theorem can be 
modified to guarantee the existence of codes that form an 
additive group. 

Theorem 5: For any q = 2’ and any integers n and j 
satisfying 

2’-‘lA<‘,1< qn 

there exists a <,t,, t,)-focused code of blocklength n over 
F4 that has 2l codewords and that forms an additive 
subgroup of F,“. 

Proofi The proof is very similar to that of the previ- 
ous theorem but using induction on j instead. The theo- 
rem is obviously true for j = 1, since [Ac$~‘,~ < q” implies 
the existence of an n-tuple c @ AL$‘,, and the code 

7cz2 L (O,c} 

is a (tl, t,)-focused code with two codewords. 
If we then assume by the induction hypothesis that 

there exists a group code 8,,-1 with 2j-’ codewords, 
then the inequality 2j-‘lA&n’,l < q” means that there exists 
a vector x that is not in c + A&n for any c E &,,-l. Define 
8zj to be the union of 8Z,-~ and the coset of &X,m~ that 
contains x, i.e., 

4*, = 7f2,-I u (x + 7$-l). 

If F4 has characteristic two, then 8Z, is an additive group 
with 2’ elements. (The requirement that q = 2’ is neces- 
sary to ensure that xi + x2 E 8,, for x,, x2 E x + +YZ,-l.> 
It is easily seen that ci + e, # c2 + e, for any e1,e2 E & 
and any c,, c2 E 8z, for &j so defined. 0 

Finally, we can generalize the upper bound of Theorem 
4 to include the possibility of simultaneous error correc- 
tion and detection. Using the definitions from Section 
III-B, the following theorem gives bounds on the best 
possible rate that can be achieved by a (t,, &)-correcting, 
(t3, t&detecting focused code; the proof is analogous to 
that of Theorem 4. 

Theorem 6: There exists a (t,, t&correcting, (t3, t4)- 
detecting focused code with rate R 2 1 -(l/n)log,(l9,&, 
where 

fl +t2 min(i,t, + t3 +min(t,,t,h 
+ t3 + t4 2(t, + t,)+ t2 + tq - i) 

l-a= c c 
n i p2q’-‘l~‘“l’. 

i=O j=O i I( 1 i j 

B. Asymptotic Bounds for Focused Codes 

In this section we are interested in the attainable rates 
for codes with very long blocklengths. The results from 
the last section are combined with the results on entropy 
maximization from Section II to obtain bounds on the 
asymptotic performance of focused codes. To this end, 

define 

R*(a,/?) 2 & Rz(an,pn). 
n-a 

Then the following two theorems provide “focused” ver- 
sions of the asymptotic Gilbert-Varshamov and Ham- 
ming bounds. 

Theorem 7: R*(a, /3) 2 1 - h(E)- EIXY) where 

~(y)Ph(y)+(l-y)log,l~l+ylog,l~~l 
and 

i 

9 T(Y) 
E = min 2a +2p, 

1 l+quy) ’ 

y = min 
4a+2/3-E )cW) 

E 

Proof: 
2(a + p)n min(i,(4a +2p - ikz) 

lKl= c 
i = O 

(4 . nE(i, j). 
5Kmax 

OIi52(a+p)n, 
O<jImin(i,(4a+2P-i)n)) 

where 

and K is equal to the number of terms in the double sum. 
Note that to achieve the last inequality we have made use 
of the well-known bound [ll] 

n 
( 1 

n[Mi/n)l iSq . 

Note also that K is a polynomial in n and so 

lim Ilog, =O. 
n4-2 n 

The maximum is found by maximizing the exponent 

h(~)+~h(y)+~YlogqI~cI+~(l-y)log,l~I 
where E = i/n and y = j/i. The values of E and y that 
maximize the exponent are given in the theorem and 
follow from Theorem 2. 0 

Theorem 8: 

where 
R*(a,P) I l- h(e) - ET(Y) 
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and 

i 

qVY) 

E=min a+/?, 
1+ qr(y) 

,=min( s,fi}. 

is a  code over F4, (qZ = pko> with blocklength n  and 
m inimum distance d, = 2t, + t, + 1. For a  given choice of 
@  (and therefore for a  given choice of &a, which we 
assume has rate R,) we can apply the traditional asymp- 
totic rate bounds [ill-1131 to R, and R, to derive asymp- 
totic bounds for combined linear focused codes. Some of 
the bounds thus derived are given in Theorem 9. 

Proofi 

14l= c ‘ajIr ““:cr’( C)( ~)(p?~~)$gqi-j 

2max 
it 

n i 
I( 1  i j (I.wl)jlLq-j: 

OIiI(cr+~)n,OIj~min(i,an) 

Theorem 9: Let 

R;(t,, t2) b sup{R: 

and  define 

where 

E(i,j)P”(b)+ih(i) 

i-j 
+ ; log, pq+ - 

n log, Pa+ 0, 

and o, goes to 0  as n  -+ 03. The  last inequality follows 
from the bound [ 111  

n ( 1  2q n[h(i/n)+%l 
i 

The maximum is found by maximizing the exponent  

where E = i/n, y = j/i. The values of E and y that 
maximize the exponent  are given in the theorem and 
again follow from Theorem 2. cl 

It is interesting to note that when IS’l/(q - 1) I (Y/((Y 
+ p> then Theorems 7  and 8  simplify to the “traditional” 
asymptotic Hamming bound and G ilbert-Varshamov 
bound for codes capable of correcting a  fraction LY + p  of 
errors in each codeword; this is reasonable, because when 
this inequality holds then all but a  vanishingly small 
fraction of the errors of Hamming weight (a + P>n have 
@ ‘-weight less than or equal  to cyn and would thus be  
corrected by a  (an,@z)-focused code. 

C. Bounds for Combined Linear Focused Codes 

In Section III-B we described a  technique for construct- 
ing focused codes with block length n over Fpb by combin- 
ing three different codes in a  specific way. In this section 
we compute bounds on  the rates that can be  achieved 
using this technique for asymptotically large n. 

Using this technique, we note that the choice of the 
common error set L% determines the code &a as well as 
the fields over which x?i and  &Z are formed; &0 is a  
(b, k, = b - r,,) code over Fp capable of detecting any 
error in 9, &i is a  code over F& (ql = p’o> with block- 
length n and m inimum distance d, = 2t, + 2t, + 1, and  6YZ 

&?? c F4* (q = pb> and let 

There exists a  combined linear fo- 
cused code of rate R and blocklength 
n that is (tl, t&focused on  a}, 

R’(a,P) b lim  Ri(crn,&z). 
nap 

If we define the function H(E, m) as 

H(e,m) b 
h(E)+Elogq(m-1) 

log, (ml 

the function G(E, m) as 

em 
G(e,m) 2 - 

m-l 

R, A 1- R,, and Bi p  (qi -1)/q, for i = 1,2, then the 
following inequalities hold. 

IT; R(a, p=O.l) - Smgle Bit Errors 

~ Lower Bound. b=4 

-0 .a .4 .6 .6 1 
a 

Fig. 5. Upper  and  lower bonds  on  R*(a,O.l) for codes over FIG and  
FE6 when G?  is set of all field elements with binary representat ion 
containing single 1. 
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~ Lower Bound. b=4 

Upper Bound. b=4 Upper Bound. b=4 

i 

----- Lower Bound. b=6 

--- Upper Bound, b=6 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

’ ’ ’ ’ 
0 2 .4 .6 6 1 

a 
“0 2 .4 .6 

a 

Fig. 6. Upper and lower bounds on R*(ol,O.l) for codes over F,, and Fig. 7. Upper and lower bounds on R*(a,p = 0,0.2) for codes over 
I& when @ is set of all field elements with binary representation FZsh when @ is set of all field elements with binary representation 
containing odd number of 1’s. containing odd number of 1’s. 

Gilbert - Varshamor? Bound: 

R“( CY,~) 2 

I 

R,,(l- fq2~+w,s,))> 

R,,(l- H(2a + P, qd), 

0, 

Hamming Bound: 

/l-R,,H(cu+p,q,)-R,,H(a+ip,qz), 
R,,(l- H(a + P,q,)), 
R,,(l- H(a+$3,q2)), 

Plotkin Bound: 

R’(a,P) 5 
I 

R,,(l- G(2a +W,q,))> 
&(I - G(2a + P,qd), 
0, 

1 .W/ilTI 

R 

, I ) , / IT] 

R’(a. p) - Odd We,ght Errors - b=6 

__ Lower Bound, &7=0 

Upper Bound. p=O 

----- Lower Bound. p=O 2 Bound. P=OZ - 

-- Upper Bound. Bound. p=O.2 P=O.2 - 

ifOI2a+22P<8, and Os2c~fp16~; 
ifOS2a+2PI8, and 8,12a+/351; 
if 8,s2a!+2psl and 052a+/310~; 
if8,<2a+2P<l and 19,12a+p<l. 

ifO<2a+2PI8, and 0 I 2a + p I 8,; 
ifO<2a+2P<6’ and 8,12a+/3<1; 
if 8,<2a+2P<l and 012a+p<0~; 
if 0,<2a+2P<l and 0,12a+p<l. 

D. Numerical Examples of Asymptotic Bounds 

Figs. 5-8 shows some of the bounds derived in this 
section for particular values of q and different focus sets. 
The following are points of interest. 

l A comparison of Figs. 5 and 6 show that relatively 
little is given up by “focusing” on the odd-weight 
errors rather than single-bit errors; this is (as is to be 
expected) especially true when the byte-size is small. 

l Fig. 7 demonstrates the observation made at the end 
of Section V-B. Recalling that a (t,O)-focused code is 

a “traditional” t-error correcting code, this implies 
that the bounds on R*(a,O) are the traditional 
asymptotic Hamming and Gilbert-Varshamov 
bounds. But it was noted in Section V-B that R*((Y, p> 
is equivalent to this bound when CI/(CI + p> 2 
IW’l/(q - 1). Relating this to Fig. 7, this means that 
the bounds on R*(a,0.2) are equivalent to the corre- 
sponding bounds on R*(a +0.2,0) when a/(a +0.2) 
r 127/255, or when CY > 0.1984. 
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Combined 1 
Combmed 

Combined 

\\ \ ‘\ 
\\ I ‘\ 0 I/II/II ~.~i,l,,,/,~, 

0 .2 4 .6 .a 1 
a 

Fig. 8. Upper  and  lower bounds  on  asymptotic rates of focused codes 
and  combined linear focused codes.  (Focus set is set of all field 
elements with binary representat ion containing odd  number  of 1’s.) 

l F ig. 8  compares the asymptotic results for focused 
codes in general  with the asymptotic results for com- 
bined focused codes derived in Section V-C. It 
demonstrates the perhaps surprising result that the 
lower bound on  the rates of combined codes can 
actually exceed that of focused codes in general; a  
similar phenomenon holds for upper  bounds.  

VI. CONCLUSION AND FUTURE WORK 

This paper  considered the problem of constructing and 
analyzing codes that are capable of offering different 

783  

levels of protection against common and uncommon 
channel  errors. A technique for constructing such codes 
was described. In addition, bounds on  the achievable 
rates of the codes were derived. 

The  obvious next question to be  answered: What, pre- 
cisely, are the rate/performance tradeoffs made  possible 
by focused codes? Under what condit ions do  focused 
codes offer additional coding gain as compared with error 
corrrecting codes designed solely with respect to the 
Hamming metric? These issues are currently being inves- 
tigated. 
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