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On the Capacity of the Noisy 
Runlength Channel 

Chris D. Heegard, Member, IEEE, Alexandra Duel-Hallen, Member, IEEE, and 
Rajeev Krishnamoorthy 

Abstract -The theory and design of codes that limit the mini- 
mum and maximum runlengths in a modulation code are well 
developed. Until recently, most information theoretic models for 
these codes were noiseless. In this paper we consider a new, 
noisy model for runlength modulation codes. Through a series 
of lemmas and theorems, bounds on the capacity of this model 
are obtained. These bounds are evaluated and used to suggest 
that improvements in storage capacity are possible through the 
use of codes with designed noise tolerance. 

I. INTRODUCTION 

T HE THEORY and design of codes that limit the 
minimum and maximum runlengths in a modulation 

code are well developed (e.g., [2]-[4], [12]-[16]). Until 
recently, most information theoretic models for these 
codes were noiseless. One notable exception is the exam- 
ple of a noisy channel model is the binary symmetric 
channel with a “d, k” constraint, as considered by Zehavi 
and Wolf [3], and Shamai and Kofman [17]. In this paper 
we consider a new, noisy model for runlength modulation 
codes. Through a series of lemmas and theorems, bounds 
on the capacity of this model are obtained. These bounds 
are evaluated and used to suggest that improvements in 
storage capacity are possible through the use of codes 
with designed noise tolerance. 

In many communications and storage systems, binary 
waveforms are used to transmit or store digital informa- 
tion. The most common examples of such systems are 
magnetic and optical disk technology, magnetic tape and 
fiber optic channels. In all of these systems, information is 
encoded, via a runlength limiting modulation code, into a 
binary signal, x(t) E I- 1, + 1). In some real sense, the 
fact that the signal can take only two possible levels 
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means that the information is essentially conveyed in the 
locations of the transitions (i.e., the times when the signal 
goes from plus to minus or vice versa) of the encoded 
waveform, x(t). The fact that the signal is runlength- 
limited simply means that the intervals of time when the 
signal is constant (i.e., the “runlengths”) are uniformly 
bounded from above and below. (The bounds are called 
the runlength constraints of the code.) 

Many detectors are designed to estimate the locations 
of the transitions in the received waveform y(t), a dis- 
torted and noisy version of the transmitted signal x(t). 
For example, in magnetic recording, the channel produces 
a (signed) pulse at the output of the channel whenever a 
transition occurs in the input x(t). A device, called a 
“peak detector,” is used to determine that a transition 
has occurred and to find the location of the pulse. A 
typical peak detector has two components: 1) a threshold 
device that declares the presence of a transition (i.e., a 
“qualifier” circuit) and 2) a pulse locating device that 
estimates exactly where the transition has taken place. 
Analogous detection can be found in optical recording; in 
these systems, transitions in the input waveform translate 
into level changes at the output. In optical systems, the 
peak detector is replaced by an “edge detector,” a device 
that declares the presence of an edge and estimates the 
location of the edge. In all of these recorders, once a 
transition is successfully qualified, an estimate of the 
transition location is computed. 

In this paper, we consider a model for runlength coded 
systems that is based on peak or edge detection [l]. The 
model does not attempt to account for failures of the 
qualifying circuit; it is assumed that every transition is 
successfully declared (i.e., no missing or false qualifiers). 
In this model, it is the error in the estimate of the 
location of the transition that introduces uncertainty at 
the channel output. The model for this uncertainty is 
additive Gaussian noise; if a transition in x(t) occurs at 
time t, and the detection estimate is T, then the error 
t, - r,, is assumed to be normally distributed with zero- 
mean and variance u* and is independent of t,. 

The model is motivated by the problem of pulse Ioca- 
tion in white Gaussian noise. If a signal, x(t) = p(t - to), 
with known shape, p(t), and unknown location, - T 5 t, 
I T, is observed in additive white Gaussian noise, y(t) = 

x(t)+ w(t) (Ew(t)w(s) = N&t - s)), then the maximum 
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Fig. 1. Peak detection of Lorentz pulse in white Gaussian noise. 

likelihood (ML) estimate of the location TV satisfies 

/ m p( t - To)y( t) dt = sup / m~(-)~(t)dt -02 -TsrsT --m 

(i.e., the ML estimate is one that maximizes the correla- 
tion). It is known, that for high signal to noise ratios 
(SNR) (i.e., llpll*/Na>, the error in the estimate t, - r0 is 
approximately Gaussian with zero-mean and positive vari- 
ance. 

For example, the results of a computer experiment is 
displayed in Fig. 1. In this experiment, a Lorentz pulse, 
p(t) = l/(1 + t*>, is observed in white Gaussian noise with 
an SNR of 20 db. The distribution of the error of the 
correlation detector is estimated and compared with a 
Gaussian distribution. It is apparent from the figure that 
the Normal curve gives a good approximation to the 
distribution of the observed error. 

The correlation can be computed by passing the ob- 
served signal through a filter with impulse response, h(t) 
= PC- t>, 

S(To) = SUP S(T), 
-TsrsT 

s(r)= jm h(T-t)y(t)dt. 
--m 

Such a filter, h( t> = p( - t), is called a matched filter, 
since the response is “matched” to the known pulse 
shape. In practice, several prudent factors mitigate the 
use of the ideal matched filter. The first follows from the 
fact that the estimated transitions t, are not generated by 
isolated pulses; on the contrary, the pulses are very dense 
in the observed signal y(t). Since the typical pulse width 
in recording is very long, the response of the matched 
filter would suffer from extreme intersymbol interference 
(ISI); the effects of “nearby” pulses on the estimate of t, 
would have a serious, detrimental effect on the estimate 
7,. Thus, as a practical matter, a correlating filter h(t), 
that makes a compromise between signal to noise ratio 
(i.e., “matched filter loss”) and IS1 is used (e.g., a “pulse 
slimming” filter). Furthermore, in practice, the pulse 
shape p(t) is not exactly known (e.g., disk-to-disk varia- 
tion) or can vary considerably (e.g., track-to-track varia- 
tions due to constant angular velocity of the disk). Thus, 
again in reality, a compromise choice of response h(t) is 
used to make the detector robust to variations in the 

Fig. 2. Parameters of binary waveform. 

pulse, p(t). However, the fact that the error in the esti- 
mate, t, - T,, has a Gaussian distribution depends only 
on the correlation structure (not whether h(t) is ideally 
matched to p(t)>. The approximation will be a good one 
provided: 1) the signal to noise ratio at the output of the 
correlator is large and 2) the filter exhibits minimal ISI. 

Finally, the model considered in this paper assumes 
that a constraint is imposed on the runlengths of the 
signal, Tmin I T, = t, - t,- 1 I T,,. We allow the run- 
lengths, T,, to assume a continuum of possibilities in the 
interval from Tmin to T,,. Of course, in practice, this is 
not the case; a minimum spacing parameter A and coding 
parameters d and k, are selected so that the runlengths 
take on a uniformly spaced set of values T, = i * A, d + 1 
I i I k + 1 and Tmin = (d + l>A, Tmax = (k + 1)A. It is easy 
to see that by shrinking the spacing parameter A (and 
increasing d and k appropriately), the runlength con- 
straints, Tmin and T,,, can be maintained and the num- 
ber of possible runlengths, (CT,, - T,,>/A + 1) can grow. 
We can think of our problem as the limiting case, when 
spacing parameter goes to zero A + 0. Furthermore, the 
practical consideration that the runlengths are discrete 
imposes no real limitation, if one is allowed to vary A. In 
fact, the choice of spacing parameter, A, should depend 
on the capacity of the channel (i.e., the noise). For low 
SNR, a large A is acceptable, since the noise limits the 
capacity. On the other hand, for higher SNR, A must be 
made smaller to approximate the capacity of the channel 
or else the capacity will be limited by an insufficiently 
small signal set and not the noise! It is our feeling that, in 
practice, one would find that a suitable choice of A would 
not be unreasonably small. 

II. NOISY RUNLENGTH MODEL 

In recording systems, a binary waveform, x(t) E 
I- 1, + l}, is used to represent stored information. Such a 
waveform can be described in terms of the instances of 
transition (i.e., when x(t) goes from plus to minus or 
minus to plus) (Fig. 2). Define t, = 0 and the nth trunsi- 
tion time by 

t, = inf{t > t,-,1x( t) f x( t,-,)}. 

Then the nth runlength is equal to the difference 
T, = t, - t,-,. 

When information is read in a recording system, esti- 
mates T,, of the transition times t, are made and used to 
recover the information. Because of the bandlimited na- 



Fig. 3. Noisy runlength channel model. 

ture of the recording channel, it is difficult to obtain 
reliable estimates for the transitions if the runlengths are 
small. For this reason, a constraint is placed on the 
m inimum value, Tmin > 0, that a runlength can assume for 
an allowed waveform x(t). A similar constraint is placed 
on the maximum runlength T,, for reasons of synchro- 
nization. Thus the channel imposes a constraint 

on the runlengths. This suggests the runlength-limited 
channel model. 

The runlength-limited channel accepts runlengths as 
inputs; the nth input is a bounded positive number, 
T,,sT,sT,,. These inputs represent lengths of time 
intervals between channel events (i.e., transitions). The 
values of the runlength lim its, Tmin and T,,, represent 
given constraints. The “true” or “absolute” time is ob- 
tained by summing the runlengths 

t,= i T.=T,+t,-1, 
i=l 

where t, = 0. The channel output is an estimate of the 
true time 7, = t, + W,, where W, is the estimation error. 
By assumption W, is an independent identically dis- 
tributed (i.i.d.) additive Gaussian noise process with 
mean-zero and variance a* (Fig. 3). 

The following three lemmas are useful tools for deter- 
m ining bounds on the capacity of the runlength lim ited 
channel. 

A closely related channel is obtained by differencing 
the noisy transition time 7,. This channel has output 
X,=7,-To-l=T,+Z,wherethenoiseZ,=W,-W,-, 
is a correlated (non-white) Gaussian sequence (E(Zi) = 
2u*, E(Z,Z,-,) = - a*). Both of these channels have the 
same capacity C,(T,,, T,,, a*>. This capacity 

The first lemma follows from Lemma 2 of [5]. This 
lemma answers the question of which runlength random 
variable T maximizes the ratio of the differential entropy 
h(T) to the expected value E(T). 

Lemma I: Let T  be a bounded random variable, Tmin 
sTsT,,. For y > 0, the bound 

h(T) +log(y) 
E(T) 

I log(A) 

Z(T,,...,T,;T~,...,T,) holds with equality if and only if the density of T, pr(t) = 
C1(Tmin,Tmax,a2) = i& rnF yh 7a.e.>, where 

II-303 ” -WE) 
T 

maXyA-*dt = 1. 
= lim  max 

Z(T,,...,T,;X,,...,X,) / Knin / 
n-+m % I E(4J ’ 

Note that this last equation uniquely determines A > 0. where P’, is the set of input distributions on the n-cube 
[‘&in, Tm,l”* 

Due to the integration on the channel input (in the 
r-channel case or equivalently the nonwhite noise in the 
X-channel case) the optimum input distribution on blocks 
of length n is not an i.i.d. distribution. For this reason, a 

Proof of Lemma I: More generally, let a random 
variable T be restricted to a subset of real numbers y, 
and f(t) be a positive function. We show that 

related channel, the channel with output Y, = T, + W, 
WY +log(y) I log(A), 

E(f(TN 
for pr( t) = yh+)(a.e.), 
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(i.e., without the integrator), is studied. The characteriza- 
tion of the second channel is easier since the optimum 
input distribution for this channel is i.i.d. In this case, the 
capacity 

Z(T;Y) 
C2(T,i~>T,,,,u2)=m9~- 

1 E(T) ’ 
where Y = T + W, Tmin I T  I T,,, W  is zero mean 
Gaussian with variance a2 and T and W  are indepen- 
dent. 

In Section III, we obtain bounds on the capacity 
cl(Tminp TmaxT a*> in the following order. First, three lem- 
mas are introduced that are useful in dealing with this 
channel. Next, upper and lower bounds on the capacity of 
the noisy runlength channel, C,(T,,, T,,,ax,(+2), are de- 
rived in terms of the capacity of the second channel 
c2(Tmi*, Tnmx, a*) (Theorem 1). Theorems 2 and 3 provide 
two lower bounds to C2(T,i,,T,,,a2). Theorem 4 de- 
scribes an upper bound on Ca(Tmin, T,,, a’). These 
bounds on C,( T,in, T,, , u*), when combined with Theo- 
rem 1 give upper and lower bounds on C,(T,,,, T,,, a*). 
Finally, an upper bound on C1(Tmin, T,,, a*> itself is 
given in Theorem 5. 

Section IV deals with computing the capacity 
c2(Tmin, Tmax, a*). The theorems and lemmas of Sections 
III and IV are used to find bounds on C1(Tmin,T,ax,a2) 
numerically as described in Section V. 

Throughout the paper, logarithms with base 2 are used. 

III. BOUNDS ON THE CAPACITY 
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where For y > 0 and 6 > 0, 

h(T+W)+log(Y) 
~f(@Ts,r> 

The proof consists of two simple steps. 
First, let T* be the random variable with the density 

q(t) = yh-f(*). Then by definition 

h(T*) = - jyq(t)log(q(t)) dt 

ET 

= jr4t)( f(t)lw(A) -WY)) dt 
= Ef(T*)log(h)-log(y). (1) 

Now, the discrimination (or Kullback - Liebler number) 
for probability densities is defined by [6] 

m&?) = jyP(t)log - i I 
p(t) dt 
q(t) * 

It is easy to show (and well known) that this quantity is 
nonnegative and equal to zero if and only if p(t) = 
q(t) (a.e.>. Thus, 

OsD(pllq) = -h(T)- jyp(t)log(yA-‘+))dt 

=-h(T)+Ef(T)log(A)-log(y) 
or 

h(T)+log(y) ~Ef(T)log(A). 
Since f(t) is a positive function, both Ef(T) and Ef(T*) 
are positive and 

h(T) +Wy) h(T*) +log(y) 
Ef(T) 

I log(A) = 
EfV*) ’ 

The last equality follows from (1). Note that equality 
holds only when p(t) = q(t) = yh-f(')(a.e.). 0 

Lemma 2: Let T be a bounded random variable, Tmin 
sT<T,,,, and let W be a Gaussian random variable 
with variance u2. Assume that T and W are independent. 
For y > 0 

+ hb(5) - 1/25log5+ ~/2max(0,10g(2~ea2y2)) 
Tmin 

7 

where 

and 
/ 

Tnax + 6 yA,‘dt = 1, 
Twin - 6 

where the “Q” function 

The function 

where the binary entropy function 

~b(5)~-51og(5)-(1-5)log(1-5). 
Finally, 

5 log C$= $f;og e 
i > 

;t;ez;;’ 

Proof of Lemma 3: Let A be the random variable 

As l7 
i 

T,,-6_<T+WIT,,+6 
0, otherwise. 

Then Pr(A = 0) = E and 
h(T+W)=Z(A;T+W)+h(T+WIA) 

h(T f W) +log(y) 2 log((2rea2 +22h(T))y2) =hb(~)+&(T+W(A=O) 
ET 2E(T) * +(l-+(T+WIA=l). 

Proof of Lemma 2: This result follows from the en- Let Z be the random variable 
tropy power inequality for independent random variables 
WE31 

2WT+W > 2 WT) + 2’Wf”. 

Lmax’“” “‘7 

T,,-S<T+WsZ,,to, 
T+W-T-:-+6. T + W < T-:.. - S. 

.-A T +AtT&W 
7 a e 

Taking the log of both sides and using the formula for the 
\ LLLlll , LLLlll 

differential entropy of a Gaussian random variable, h(W) For z > 0, the conditional density of Z given A = 0 
= 1/210g(2rea2), shows 

h(T+W)>~log(2~e~~+2~‘(~)). 
Pna(ztO)=f jTTT&t)&&+T,,+6-t)dt 

ltll” 
1 

The lemma immediately follows from this. 0 = ;~w(z + T,,,, +s-t,&Pw(z), 

Lemma 3: Let T be a bounded random variable, Tmin where PT and PW are the densities of T and W, and 
sT<T,,,,, and let W be a Gaussian random variable Tmi, I to I Tm,* Since for negative values of z, the condi- 
with variance g2. Assume that T and W are independent. tional dens@ pzlA (z IO) is also bounded above by 
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l/ep,(z), it follows that E(Z21A = 0) I u2/e. Thus, 

h(T+WIA=O)=h(ZIA=O)+og 

From Lemma 1, 
h(T + WIA = 1) +log(y) 

E(T+WIA=l) 
Ilog( 

E(T+WIA=l)= 
E(A(T+W)) <E(T)+EIWI 

l--E l--E 
I77 

E(T)+a $ 
\J 

zz 
l--E * 

Thus 

h(T+WlA=l)+log(y)<log(h,) l--E * 
Combining these inequalities yields 

h(T + W> +log(y) 
ET 5 log(b) 

h,(c)+;log,( Fy2)++og(A8) 
+ E(T) 

By using the fact that the function Q<c - x>+ Q<c + x) is 
increasing in x on the interval 0 I x 5 c, it can be shown 
that E I 5. Thus, the right-hand side of this inequality is 
bounded above by f(a,6,y), where f(*> and 5 are de- 
fined in the statement of this lemma. The last bound 
follows from the fact that E(T) 2 T,i,, and all terms of 
f(a) are nondecreasing in 5. 0 

Theorem 1: 

2 C1(Tmin,Tmax, 
1 

(+2)1C2(Tmin,T,,,2a2)+- 
2Tmi* . 

Proof of Theorem I: The first inequality can be seen 
by comparing the first channel with output rj and the 
second channel with output I$ (see Fig. 3). Let the input 
distribution on the runlengths T,, * * *, T, be i.i.d. (this is 
the form of the optimum distribution for the second 
channel with output Y). Then 

h(T1;. . ,T,) = i h(~il~l,~~~,~i-l) 
i=l 

r i h(+l,. . . ,Ti-l, ti-I) 
i=l 

= 2 h(Y;:) =h(Y,;.*,Y,), 
i=l 

where the last equality follows from the i.i.d. assumption 
on the inputs and the white noise W. 

The second inequality follows by comparing the first 
channel with output xi and the second channel with 
output E; (see Fig. 3). Fust, for Zi = Wi - ydl, 

T,)=h(Z,,-A) 

n 

i=l 

2 2 h(ZiIZ,,* * * 9 Zi-,,Wi-1) 
i=l 

= ~h(J4Q=h(W,;**,W,) 
i=l 

n 

h(X,,**., X,) = C h(XilXl,. . *,Xi-l) 
i=l 

I i h(Xi) 
i=l 

= k h(q+\lzw). 
i=l 

Thus 

E(L) 
h( Xl; . * ,Ix,)-h(X,;..,X,IT,;..,T,) = 

WJ 

I 
i~l(h(~+fiTJ$-h(&W$+;los(2)) 

-wt) 

To obtain lower bounds to C,(T,, T,,, u2), write 

Z(T;Y) h(T+W)-klog(2?rev2) 

E(T) = E(T) 
Then note that a lower bound to the capacity is obtained 
from Lemma 2 when y = l/e 

Z(T;Y) 
E(T)> 

log(l+~) 

2E(T) * 

Then any choice of distribution for T will provide a lower 
bound to C,(T,,, T,,, a2>. 

Theorem 2: 

1+ (Tmax-Tmin)2 

C2(Tmin,T&,u2) 2 
2n-ea2 

Tmax + Tmin * 
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Proof of Theorem 2: Let T have a uniform distribu- possible to compute the capacity (and the capacity achiev- 
tion on the interval [Tmi,,, T,,]. Then ing distribution) for the channel C&T,,,in, T,,, a2>. 

We consider a scalar additive Gaussian channel charac- 
terized by Y = T + w, where T, Y, and I@ are the input, 
output, and noise random variables respectively. The in- 
put r.v. T is constrained to take on values on the compact 
interval K p [Tmin, T,,]. Let yK be the class of distribu- 
tions on the interval [Tmin, T,,]. The random variable W 
is taken to be Gaussian, W N N(0, u2), and so 

h(T)=log(Tmax-Tmin), E(T)= Tmax + Tmin 2 . 0 

Theorem 3: 

where 

Y= d&, jzA-‘dt=L 

O=(l+y(T,inA-Tm”-T,axA-Tm=))loge. 

Proof of Theorem 3: Note that 

b(l+s) > h(T)-iy;12-eu2). 

2E(T) 
Let T have the distribution, yA-‘; this maximizes this 
lower bound (c.f., Lemma 1). Then 

e 
h(T) = 8 -log(y), E(T) = ~ 

log(A)’ ’ 

To state Theorems 4 and 5, we use definitions intro- 
duced in Lemma 3. 

Theorem 4: For S > 0, 

Proof of Theorem 4: Apply Lemma 3 with y = 
l/&E? 0 

Theorem 5: For S > 0 

Proof of Theorem 5: In the proof of the upper bound 
of Theorem 1, it is shown that 

Z(T,;.;,T,;X,;..,X,) 
kh(T,+fiK)-h(w) 

E(L) 
I i=l 

E(L) 
This inequality, when combined with Lemma 3 (y = 
l/m) gives the result. 

IV. COMPUTING THE CAPACITY, C,(T,,, T,,, a2> 
This section deals with computing C,(T,,, T,,, u2), 

the capacity of the second channel. The capacity of an 
additive scalar Gaussian channel with amplitude (or am- 
plitude and variance) constraint is achieved [lo] by using a 
discrete input distribution. Following the results in [lo], it 
was shown in [ll] that the distribution that achieves 
capacity for the channel C,(T,,,, T,,, a2) is also discrete. 
Furthermore, using the algorithm outlined in [ll] it is 

PY,T( yb) = PW(W = Y - t, = 

and for all F E 9& we may write the marginal distribu- 
tion, 

py(y>= jTT”““pwty-t)dF(t). 
Ill,” 

Since for the fixed channel, the mutual information 
between the input and the output random variables de- 
pends only on the probability distribution of the input, we 
explicitly write Z(T; Y) = Z(F). The capacity of the chan- 
nel is 

where 

E(F) p jTT”“.tdF( t) 
mm 

is the mean of the input distribution F. 
The marginal information density is defined as 

i(t;f’) A jm PY,T(ylt)log 
-cc 

4, 

from which the mutual information Z(F) may be written 
as 

Z(F) = jTTT(t;F)dF(t). 
IIll” 

For any channel constraint K = [ T,i,, T,,,], noise power 
u2, and $2 0, denote 

L(Ku2, $)‘;zg(Z(F)-$E(F)). 
k 

The set of distributions, F, is convex and compact in 
the Levy metric topology, the function E(F) is linear, and 
the function Z(F) is strictly convex-cap, continuous, and 
weakly differentiable in 9j. It can be shown [ll] that 

Lemma 4: The Value L( K, u2, $) is achieved by a 
unique input distribution function F+ E Fk; i.e., 

L(Ku2,$) = Fz% (Z(F) -W(F)) =Z(F,)- W(F+). 
k 

For any F E 9k we define a point of increase t to be 
such that F(t) > F(t - 6) for all 6 > 0. Let G denote the 
set of the points of increase of F. Lemmas 5 and 6 state 
the necessary and sufficient conditions for F to be opti- 
mal, and the discrete nature of the optimal distribution. 
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Lemma 5: Let. F be an arbitrary probability distribu- 
tion in Fk. Let G denote the points of jncrease of F on 
ET,,,,,, T,,]. Then for a given parameter #, F is “optimal,” 
i.e., F maximizes L(K, u2, I)), if and only if it satisfies the 
Kuhn-Tucker conditions [61, 

i(t;F)-$t<Z(F)-$E(F), TminstsTmax, 

i(t;F)-rC,t=Z(F)-$E(F), teG. 

Lemma 6: The points of increase of an optimal F in 
[ Tmin, T,,], G is a finite set. 

Finally we show that the capacity C,(T,i,, T,,,, u2) can 
be achieved. 

Lemma 7: The capacity, C,(T,,, T,,, u2>, is achieved 
by a unique probability distribution function, F* E Fk; 
i.e., 

Z(F) z(F*) 
C2(Tmin,Tmax,u2) = max - = ~ 

Fc9Yk E(F) E(F*) ’ 

forsome F*EY~. 

We use the function L(K,u2,$> to find the constraint 
I/J* and the corresponding distribution FJs that achieves 
c2(Tmin 7 T~ax ) u2) in the following manner. Associated 
with every distribution F E Yk are the following vari- 
ables: the cardinality of the set of the points of increase of 
F, (GI = n; the locations of the points of increase of F on 
[Tmi,,, T,,], L; and the respective probability mass func- 
tions associated with each member of the set L, P. If we 
fix IZ, then the following lemma outlines the iterative 
scheme to obtain C,(T,,,, T,,,,, u2). 

Lemma 8: Given a peak constrain, K = [Tmi,,, T,,], 
noise variance u2 and the number of inputs, n, let Fj 
denote the class of discrete distributions restricted to the 
interval [Tmin, T,,,,] having IZ atoms. If, for any $2 0, 
F E Y/ is such that 

then the set of iterations, 

converges to $*, 

'('*j) 

‘j+‘= E(Fej) 

where $* satisfies 

ZPJ zP$*) -=- 
?>5 E(F,) E(F& * 

The maximization algorithm (to find F$ alternates 
between a variant of the Arimoto-Blahut algorithm to 
compute P, given IZ and L, and a set of iterations to 
compute L given IZ and P. The optimality of the putative 
optimal distribution is checked by seeing if it satisfies the 
Kuhn-Tucker conditions, and increasing the number of 
points by one every time the optimality conditions fail. If 
the distribution satisfies the conditions of Lemma 5, then 
F,, is the capacity achieving distribution F*. 

Signako+loise Ratio (db) 

Fig. 4. Bounds on capacity of Tmin = 2, T,,,,, = 4, noisy runlength 
channel. 

V. NUMERICAL RESULTS 

We computed bounds on C,(T,,, T,,, u2> numerically 
for several runlength parameters (Figs. 4-7). The bounds 
are plotted versus noise variance (SNR = l//u2 db). By 
Theorem 1, C2(T,i,,T,,,~2)~ C1(Tmin,Tmax,u2). Thus, 
we used lower bounds on C,(T,,,, T,,,, a21 given by The- 
orems 2 and 3 to obtain lower bounds on C,(T,,, T,,, u2>. 
We found that the bound of Theorem 2 was consistently 
worse than the bound of Theorem 3. However, we show 
both bounds since Theorem 2 utilizes uniform distribu- 
tion on runlengths, and its bound is easier to compute. 
The difference between these lower bounds grows as the 
length of the interval T,,, - Tmin increases. It is most 
pronounced for the (Tmi, = 3, T,, = 100) channel (Fig. 7). 

Two different upper bounds on C1(T,,,i,,T,,,u2) can 
be obtained from Theorems 1, 4 and 5. The first bound is 
found by bounding C2(Tmin,T,,,a2) (Theorem 4) and 
using the second inequality of Theorem 1. The second 
bound is given by Theorem 5. Note that upper bounds of 
Theorems 4 and 5 depend on the parameter 6. By varying 
6, we found the “best” upper bounds for each theorem 
and each set of parameters. For channels of considera- 
tion, the first upper bound (Theorems 1 and 4) was worse 
than the second upper bound (Theorem 5). Thus, we 
show only the second bound in the figures. We observe 
that lower and upper bounds depend much stronger on 
Tmin than on T,,. For example, for Tmin = 3, the bounds 
of Theorems 3 and 5 stay nearly the same when T,,, is 
changed from 8 to 100 (Figs. 6, 7). 

Following the approach of Section IV, we also com- 
puted the capacity of the second channel C,(T,,, T,,, a2> 
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Fig. 5. Bounds on capacity of Tmin = 2, T,,,ax = 8, noisy runlength 

channel. 
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Fig. 6. Bounds on capacity of Tmin = 3, T,,, = 8, noisy runlength 
channel. 

for (Tmi” = 2, T,, = 4). We used this capacity and Theo- 
rem 1 to find a lower and an upper bound on 
c,(Tmin, Tm,9 a2)* The resulting bounds (C, = lower 
bound on C, and upper bound on C,) are better than the 
bounds obtained from theorems of Section III, but their 
computation is more complex. 

t 

\ 

__*- ,_.'. 
__-- __/ 

__-- _.. __.' I 
__-- 

.7 __-- 
Capacity Regina ___.....‘.’ 

/ 

p ____------ \ ,.-” 
- .,_.~’ Theorem 2 

.3 

t Theorem 3 

.2 - 

.I- I I I I I I I - 
10 I2 14 16 I8 20 22 

Signal-w?Joise Ratio (db) 

Fig. 7. Bounds on capacity of Tmin = 3, T,,, = 100, noisy runlength 
channel. 

Note that the runlength parameters chosen in Figs. 4-6 
correspond to (d, k) constraints of (1,3), (1,7), and (2,7) 
recording codes, where d and k represent the minimum 
and the maximum number of consecutive zero (0) symbols 
between one (1) symbol. Thus, in the corresponding wave- 
form, transitions occur at least (d + DA and at most 
(k + 1)A time units apart, where A is the symbol interval. 
(We use A = 1.) For example, MFM is a (d = 1, k = 3) 
binary code of rate l/2 [12]. We observe that our lower 
bound on the capacity C, of the corresponding (T,i, = 2, 
T = 4) channel significantly exceeds l/2 for high sig- 
nil:to-noise ratios, i.e., in the region where the probabil- 
ity of “peak-shift” is small (Fig. 4). (Note that the SNR = 
22 db corresponds to the “peak-shift” probability 
2Q(A /2a) = 3.2 x lo-“.) Popular rate 2/3 (1,7) codes 
are the Jacoby code [141 and the AHM (IBM) code [15], 
[16]. For high signal-to-noise ratios, their rate is much 
lower than our lower bound on C,(2,8, a21 (Fig. 5). Simi- 
lar comparisons can be made for rate l/2 IBM [II, [21, 
[16] and Zerox [13] (2,7) codes (Fig. 6). 

ACKNOWLEDGMENT 

C. D. Heegard would like ‘to thank Paul Siegel and 
Razmik Karabed for useful discussions on the topic of 
this paper. The authors would like to thank Venkatacha- 
lam Anantharam for help with Lemma 3 and Joseph 
Abaya for computing some of the bounds. 

REFERENCES 

[l] P. H. Siegel, “Applications of a peak detection channel model,” 
IEEE Trans. Magn., vol. MAG-18, no. 6, pp. 1250-1252, 1982. 



720 

La 

131 

[41 

El 

[61 

[71 

[81 

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991 

R. L. Adler, D. Coppersmith, and M. Hassner, “Algorithms for 
sliding block codes,” IEEE Trans. Inform. Theory, vol. IT-29, no. 1, 
pp. 5-22, Jan. 1983. 
E. Zehavi and J. K. Wolf, “On runlength codes,” IEEE Trans. 
Inform. Theory, vol. 34, no. 1, pp. 45-54, Jan. 1988. 
A. Gallopoulos, C. Heegard and P. Siegel, “The power spectrum of 
runlength limited codes,” IEEE Trans. Commun., vol. COM-37, no. 
9, Sept. 1989. 
C. D. Heegard, “A pair of information theoretic lemmas with 
application to runlength coding,” 25th Ann. Allerton Conf. Corn-. 
mun., Contr. and Comput., Sept. 30-Oct. 2, 1987. 
R. Blahut, Principles and Practice of Information Theory. New 
York: Addison-Wesley, 1987. . _ 
C. E. Shannon. “A mathematical theorv of communication,” Bell 
Syst. Tech. .I., vol. 27, pp. 379-423, July 1948; pp. 623-656, Oct. 
1948. 
A. J. Stam, “Some inequalities satisfied by the quantities of infor- 
mation of Fisher and Shannon,” Inform. Contr., vol. 2, pp. 101-112, 
1959. 

[lo] J. G. Smith, “The information capacity of amplitude and variance- 
constrained scalar Gaussian channels,” Inform. Contr., vol. 18, pp. 
203-219, 1971. 

[ll] R. Krishnamoorthy, and C. D. Heegard, “On computing the capac- 
ity of certain peak- and power-constrained channels,” in prepara- 
tion. 

[12] M. Hecht and A. Guida, “Delay modulation,” Proc. IEEE, vol. 57, 
no. 7, pp. 1314-1316, July 1969. 

[13] K. Norris, Xerox Disclosure J., vol. 5, no. 6, pp. 647-648, Nov./Dee. 
1980. 

[14] G. Jacoby, M. Cohn, and A. Bates, III, U.S. Patent 4,337,458, 1982. 
[15] R. Adler, M. Hassner, and J. Moussouris, U.S. Patent 4,413,25 1, 

1982. 
[16] T. Howell, “Statistical properties of selected recording codes,” IBM 

Res. Rep., Aug. 1987. 
[17] S. Shamai (Shitz) and Y. Kofman, “On the capacity of binary and 

Gaussian channels with runlength-limited inputs,” IEEE Trans. 
Commun., vol. 38, no. 5, pp. 584-684, May 1990. 

[9] N. M. Blachman, “The convolution inequality for entropy powers,” 
IEEE Trans. Inform. Theory, vol. IT-11, pp. 267-271, April 1965. 


