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Bounding the Capacity of Saturation Recording: The
- Lorentz Model and Applications

Chris Heegard, Member, IEEE, and Lawrence Ozarow, Member, IEEE

Abstract—This paper concerns the problem of bounding the
information capacity of saturation recording. The bounds ap-
ply to a variety of systems such as magnetic tape recorders,
magnetic disks, and optical data disks. The superposition chan-
nel with additive Gaussian noise is used as a model for record-
ing. This model says that for a saturation input signal, x(¢), (i.e.,
one that can assume only one of two levels) the output can be
expressed as y(r) = #(r) + z(t) where %(¢) is a filtered version of
the input x(s) and z(?) is additive Gaussian noise. The channel
is described by the impulse response of the channel filter, A(r),
and by the autocorrelation function of the noise. A specific ex-
ample of such a channel is the differentiated Lorentz channel;
this model is often used to describe magnetic recording [2]-[6].
Certain autocorrelation and spectrum expressions for a general
Lorentz channel are derived. Upper and lower bounds on the
capacity of saturation recording channels are described. The
bounds are explicitly computed for the differentiated Lorentz
channel model. Finally, it is indicated how the derived bounds
can be applied in practice using physical measurements from a
recording channel.

I. INTRODUCTION

HIS paper concerns the question of determining the
capacity of saturation systems to record information.
The capacity of a recording device, such as a magnetic
tape recorder or an optical data disk, is a measure of the
maximum number of bits of information that can be reli-

ably represented along each length of the track. The ca-

pacity is a number, measured in units of information per
unit length (for example, bits per inch). To be a reliable
representation of information requires that the data can be
recovered with a small probability of error. The theory of
information, as first described by Shannon [9], is a proven
method of estimating the capacity of communications sys-
tems such as telephone line transmission and satellite
communications. The method has proven itself to be an
indispensable tool of digital communications engineering.
This paper attempts to provide some similar tools useful
for the analysis and design of digital recorders.

This paper derives formulas that provide upper and
lower bounds on estimates of the capacity of saturation
recording systems. These bounds are based on the new
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result in [1] and the classical techniques described in [8,
ch. 7, 8, 19]. With these formulas, physical measure-
ments obtained from a recording system can be used to
obtain bounds on the capacity measured in bits per inch.
These bounds can be used in the selection of individual
physical compounds of the system (e.g., heads, media,
electronics) and in the design of the signal processing ele-
ments (e.g., modulators, read and write equalizers, de-
tectors). The bounds can also be used to compare the es-
timated capacity to the actual achieved information density
of an existing recording system.

In order to obtain estimates on the capacity of a channel
(transmission or storage), a simple model must be avail-
able that provides a reasonable approximation to the
transformation of input signals to output signals. Models
for communications channels often involve distortion on
the input signal and noise (i.e., a deterministic and a ran-
dom component). A typical model for a telephone or sat-
ellite channel is one for which there is linear filtering on
the input and additive noise. Similar models for saturation
recording channels have often been proposed and studied
[2]-[6]. The main features that distinguish these two
models are the constraints on the input and the form of
the channel filtering.

In most communications channels, a constraint on the
input signal x(¢) takes the form of a limit on the average
or peak power of the input signal. For example, an aver-
age power constraint P would require that:

T
1
lim = S (x())’ dr < P
T— o T Jo

while a peak power constraint on the input would require
(x(1))* < P for all ¢ or, equivalently,

7+ T
- S (@)’ dt < P
T J;

for all T, 7. In saturation recording, such as a magnetic
or optical recording channel, a more severe constraint is
imposed, namely (x(t))* = P for all r. One might describe
such a constraint as a ‘‘constant power’’ constraint since
it is required that:

1 7+ T
T S (x(1)* dt = P

forall 7, 7.
In-this paper, the techniques needed to obtain upper and
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lower bounds on the capacity are described. The upper
bound uses the fact that the average power constraint is a
less severe requirement and the capacity for this con-
straint is easily computed. The technique for determining
the capacity under an average power constraint is com-
monly called “‘water filling”> [8]. The lower bound fol-
lows from a new result, presented as a lemma, in the pa-
per by Ozarow, Wyner, and Ziv [1]. This result allows
one to obtain a lower bound on the capacity of a saturation
channel as a lower bound to the peak power channel.

The superposition channel with additive Gaussian noise
is used as a model for saturation recording. This model
says that for the saturation input signal x(z), the output
can be expressed as y(f) = (z) + z(t) where X(t) is a fil-
tered version of the input x(¢) and z(r) is additive Gauss-
ian noise. The channel is described by the impulse re-
sponse of the channel filter, h(t), and by the
autocorrelation function of the noise. A specific example
of such a channel is the differentiated Lorentz channel;
this model is often used to describe magnetic recording
[2)-16].

Upper and lower bounds on the capacity of saturation
recording channels modeled by the superposition channel
with saturation inputs are described. The bounds are ex-
plicitly computed for the differentiated Lorentz channel
model.

The purpose of this paper is twofold.

The first purpose is to describe digital recording as a
digital communications problem and to bridge the mag-
netic recording and communications/information theory
areas. Basic results and relationships from information
theory and simple models for the recording process are
brought to bear on the problem of determining the capac-
ity of digital recording systems. An attempt has been made
to present a self-contained introduction to the techniques
and models useful in dealing with these problems. It is
the hope that the tools presented will spark an interest
from those involved in building state-of-the-art digital re-
cording systems and from those from the digital commu-
nications area.

Second, the expressions derived can be used to bound
the capacity of recording systems modeled by the Lorentz
response and from physical measurements from a partic-
ular recording channel. These bounds can be used as a
guide in determining the performance of individual com-
ponents as well as entire recording systems.

The paper goes as follows. First, the basic definitions
of the channel are given. Through the notion of a matched
filter, the waveform channel model is equated to a model
with vector inputs and outputs. This is followed by a brief
review of Fourier transforms and several related identi-
ties. A general Lorentz model for recording is presented
and basic autocorrelation and spectrum results are de-
rived.

Upper and lower bounds on the capacity of saturation
recording channels are developed. First, bounds on the
mutual information for the vector model are obtained.
Next, the channel capacity theorem is described in terms

of maximizing the average mutual information between
the input and output. An extremely useful lemma, Lemma
1 of [1], is reviewed and its application to the saturation
recording channel capacity question is explained. Com-
bining the bounds on the mutual information with the ca-
pacity results, upper and lower bounds on the capacity of
saturation recording are obtained.

As an example of the utility of these bounds, the bounds
on the capacity are explicitly computed for the differen-
tiated Lorentz channel model. Also, it is indicated how
the derived bounds can be applied in practice from phys-
ical measurements on a saturation recording channel.

Finally, we note that recent progress has been made on
improving the bounds that are employed here. In [15],
improvements in the lower bound are described, while
[16] shows some methods for improving the upper bound.
These results fit well into the models we develop here and
might prove useful in developing tools for bounding the
capacity of a digital recorder.

II. CHANNEL MODEL AND DEFINITIONS
A. The Saturation Recording Channel Model

Saturation recording channels are often described by a
superposition model with additive noise (see Fig. 1). In
direct recording systems, the input signal x(t) is chosen
to saturate the channel; the signal assumes only one of
two possible values at time ¢, x(t) € {+\/1_’, ~vJP}. In
practice, the input signal is synchronized with a clock and
thus can be expressed by:

n

x(t) = ,Zl x;Br(t — jT) (1)
P=

where T is the symbol period, the symbols x; €
{+~/_, —\/P}, and the box function

1,
Br(t) = 0,

The additive noise, superposition model produces an
output signal

0<:<T,

otherwise.

y(t) = %(1) + 2(1) (3]

where %(¢) is a filtered version of the saturation signal x(t)
and z(¢) is additive white Gaussian noise. The channel is
described in terms of the impulse response of the filter,
h(1), and the spectrum of the noise, R,(r) = E,(t +
7)z(r). In particular, the filtering of the input signal is
expressed as the convolution of x(r) with h(t)

() = h *x(t)

S hn)x(@ — 7 dr

I

2 xpr(t = D)
s
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Fig. 1. Saturation signals and superposition channel.

where the symbol pulse, pr(t), is the convolution of the
box function with the channel impulse response

+o

pr(t) = h * Br(t) = S_ h(r)B(t — 7) d1

=gty —gt—T1)

where the channel step response

gty = S.— h(7) dr.

The noise signal, z(1), is a zero-mean white Gaussian pro-
cess that is independent of the input signal. The autocor-
relation

R,(7) = E{z( + Nz} = % 8(7)

where 8(7) is the Dirac delta function. [Note that the white
noise assumption is not very confining; any noise that has
a strictly positive power spectrum can be whitened by a
linear filter. The whitening filter then becomes a part of
the channel impulse response h(t).]

It is important to note that the superposition model
given by (2) holds for recording channels only when the
input signal x(t) is of the saturation type as in (1). For
example, in magnetic recording, (2) does not describe the
output signal y(£) when the input x(¢) fails to saturate the
magnetic material. This fact often leads to confusion when
magnetic recording is described by a linear channel
model. In addition, the model that is considered here is
the so-called direct recording channel; it is not to be con-
fused with the AC-biased channel which also has a linear
channel description. (In AC-biased channels, the input
signal is bounded but is not constrained to be of the sat-
uration type.)

B. The Matched Filter Receiver

Given the output signal y(t) [given by (2)], a sufficient
statistic for the input signal x(1) [given by (1] is obtained
by sampling the output of a filter matched to the symbol

pulse pr(®) [18]. Let the matched filter output:

+ oo

y@y =pr*y® = S_m pr(=ny( — 7 dr.

Then the samples
y = y&T),

form a sufficient statistic for x(r) fi.e., these samples con-
vey the same information about x(?) that is contained in
y()]. In this case, the matched filter has an impulse re-
sponse that is equal to the time reverse of the symbol pulse
p7r() = pr(—t). From this sufficient statistic, a vector
model for the channel is obtained. Let the input vector X
=[x, X2, """ » x,]' and the output vector y = [y1s Y2»
.« -, y,). Then the two are related by the equation’

y=Mx +12 3)

k=1,2,-",n

where the n X n channel matrix My is given by:

My = {mg}isij=n Mi T R,(G — HTD)  (“a)
is determined by the pulse autocorrelation function
+ 00
R, (1) = g# pr(t + Dpr(t) df (4b)

The noise vectorz = 21,22, * * "> z,]' consists of samples
of the noise signal, z(¢), at the output of the matched fil-
ter:

+ oo

7 = pr* 2kT) = S_ pr(—=7)2(kT — 7) dT.

This vector is a zero-mean Gaussian vector with autocor-
relation matrix proportional to the channel matrix

N,
E{er} = 30‘ MT

and is independent of the input vector X.

In magnetic recording, a typical description of the
channel impulse response, h(r), is that of a lowpass filter
and differentiator. One popular model for the lowpass fil-
ter is the Lorentz pulse, 1/(1 + t%) 21, [6]. In this paper,
upper and lower bounds on the Shannon information ca-
pacity of the superposition model for saturation recording
channels are derived. These bounds are explicitly com-
puted for the Lorentz channel response.

C. Fourier Transforms

In the sequel, the Fourier transform is used to describe
many of the results. In particular, define the Fourier

'Note that the signal, x(1), in (1) is only of saturation type for0 = ¢ <
nT. To ensure that it is a saturation signal for all 1 means that x, must be
defined for both k < Oand k > n(e.g., sl X = + \f(?), a constant). In
this case, the matched filtered channel, y = Mrx + 2 + ¢, where the con-
stant n-vector, ¢, is known at both the input and output. Since the capacity
in this case is independent of the value of ¢, we assume without loss that
¢ = 0 from here on.
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transform of a time signal a(z) by the equation
+ o

a(t)e™™ dt.
[e]

A) = S

Transform pairs and identities are then identified by the
notation

§
a(t) < A().
For example,”

B,(1) 3 sin wfT o7 1 3
7f

§
& iz sgn (f)e 2™

1+ 2

Given a channel impulse response, h(?), the Fourier trans-
form

F

h(ty < H(f)
is called the channel transfer function, H(f). For the dif-
ferentiated Lorentz channel, :

h(t) = b H(f) = —i2n¥fe . (5a)

-2t
(1 + 1%?
Several identities are useful

§ d 3
a*b(@) « ANHB), Jab) < i2mfA(S)

+oo
a(t) = Si 47 4 (Hilbert Transform)

t—7
% .
< isgn (A,
<t i 4
ca
o

+0oo

a(o + t)a(o) do & A

& .
> o claldaf)e™™

and

v - |

As an example of the last identity, the differentiated Lor-
entz channel has a pulse autocorrelation (4b)
47 27
4+12 4+ @-T)
2=
4+ @+ TV

R, (@)

&
& 4r2sin® (xfT)e  * V1,

Another useful tool involves the Fourier series ob-
tained by sampling a signal a(z). If A(f) is the Fourier

-1, f<0O
Sgn(f)y=4 0, f=0
+1, f=0.

transform of a(t), then by the Poisson sum formula [7)
+ o0 1 + 0o f _ ]
> akT)e™™ = X A<——- .
2., dkDe Ti2"\'T
This is known as the aliased spectrum of a(t). Note that
the pulse power spectral density, Spr(e'z”f ), obtained from
the sampled autocorrelation is a power spectral density;
it is always a nonnegative number
Ry (ei27rf)

pr

+oo
) % R, (kD)™™

-0\
o)
T
For example, in the differentiated Lorentz channel, the

pulse power spectrum is obtained by sampling the auto-
correlation

2
S, (") = ——4L2— sin? (wf) cosh <4—; <f - %)),
T sinh <—7£>

T
0<f=<1 (5b)
where cosh (x) = ¢° + ¢~ */2 and sinh (x) = & —e /2.

+ 00

1
_Ly
Ti=-»

v

0.

D. The General Lorentz Channel

The general Lorentz model for magnetic recording is
based on two basic components related by the Hilbert
transform. The horizontal and vertical components are
given by:

gn(t) = g, (T) = —gw(®) =

1+ 12 1+ %

The Lorentz model says that the step response of the sys-
tem is a linear combination derived from the two com-

ponents
t—v t— o0
gL(t) = agy <——> + bg, < >
o B8

for fixed constants a, b, « > 0,8 > 0,7, 0. Fig. 2 shows
the decomposition of such a model. The autocorrelation
of the general Lorentz step-response is given by the
expression:

2 b2
o= (£2)e ) () 3
__(abozﬁ)\: <T—v+a>
a+ B 8 at+f
_ <T + v - a)}
8 a+ B

§ -
S azazﬂzeﬂtmm + b2621r2e 47| fl

+ 2abafBw? sgn (f) sin Qxf(r — 0))

- e —2m(e + B f1
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Fig. 2. General Lorentz puise, g, (r) and §,, € a=1,a=1,v=0,
b=058=0.50=0.3).

while the pulse spectrum (aliased spectrum) for the pulse
response, pr(t) = g, (t) — G, (t — T), is given by:
Sy ey = 4 sin® (xf)

abafr?

a’a’r? h (4 1
Tsinh @ra/ 1) O 47/~ 5)/ T> *

149

bution on the messages. In this case, the quantity that
bounds the rate of reliable storage is

bits

bits 1
= — I(x;
x:) symbol

second n

1
n—TI(x, y)

where I(x; y) is the mutual information. For the vector
channel (6), the mutual information can be expressed:

Ix; y) = h(y) — h(ylx) = h(y) — h(2)

where the differential entropy of a random vector u

h(u) = — Sfu(u) log (fy(w)) du

is expressed in terms of the probability density of u,
fu (w)’. In the case of a Gaussian vector, such as z, this
integral is easy to compute from the formula for differ-
ential entropy:

h(z) = g log (7reNo|MT|l/”)

where |M;| is the determinant of the matrix M.*

In general, the differential entropy of the output, y, is
difficult to compute. However, upper and lower bounds
for h(y) are well known.

The upper bound follows from the fact that the differ-
ential entropy of a random vector is bounded by the dif-

b2627r2 1 ]
T sinb 2n8/T) <" <4wﬁ<f - 5)/ T)

This last result can be derived via the identities presented
in the Appendix.

ITII. Bounps ON THE CAPACITY
A. Mutual Information

The rate (or density) of reliable information storage in
a saturation recorder is bounded by the information the-
oretic quantity known as the mutual information [8], [9].
For the channel of interest, given by (3):

y=Mmx+z (6a)

The input x and noise z are independent and the noise is
zero-mean Gaussian with covariance proportional to M,

N, MT>. (6b)

2

Since the input vector x represents stored information, it
can be considered a random vector by assigning a distri-

xlz,z~§7£<0,

* <T cosh Qm(a + B)/T) — cos 2w (v — a)/T)>
- (sin Q7(v — 0)f/T) cosh @m(a + B)1 — f)/T)
+ sin @x(v — o)(1 — f)/T) cosh Qn(a + B)f/T))

ferential entropy of a Gaussian vector with the same co-
variance

n
h(y) < 5 log Qme|R,|'™

= g log (we|N, My + ZMTRXM'TII/")

where R, = E{(y — Ey)(y — Ey)'} is the covariance of
the output and R, = E{(x — Ex)(x — Ex)'|} is the co-
variance of the input. In terms of the mutual information,

l/n>

3In this paper, all logarithms will be taken to the base 2; the information
is measured in bits.

“Note that the determinant is nonnegative, |M;| = 0, since My is a non-
negative definite matrix.

2 t
_RXMT

n
I(x; y) < =1 I+
(x; ¥) 20g<‘ N,
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The average rate of data transmission, measured in bits
per symbol, is obtained by considering the limit for large
vector length n. Define the limiting average differential
entropy:

h(X) = lim lh()c),
.1 o1
KY) = lim — h(y) and K(Z) = lim - A(z).

n— o n— o

Then the average mutual information
bits
symbol

IX; Y) = lim %I(x, y) = (Y) — h(Z)
n— o

It is this average rate of information that plays an impor-
tant role in determining the limits of reliable storage in
saturation recording systems. Since the matrix My is ob-
tained by sampling an autocorrelation function, it is a
nonnegative definite, Toeplitz matrix. Thus, by using
Szegd’s theorem [10, pp. 64, 17], the limit

1 ‘ e
lim ;log (IM7]) = SO log (S,,(e”™)) df

n—o

is equal to the integral of the logarithm of the power spec-
tral density, S,,T(e’z”f) [e.g., (5b)]. This means that

1

nZ) = % SO log (WeNoSpT(KEZWf)) df.

If the input vector, x, is obtained by sampling a stationary
random process with power spectral density S, (e'*™), then

1
h(Y) < 3 S log (weS,,(e™)(N, + 25.(e™™)
0

- S,(e*™)) df.

(A careful proof of the validity of this bound involves the
diagonalization of the channel matrix, My, in terms of its
eigenvalues and eigenvectors. The problem involves the
fact that the upper bound on h(y) need not be of the form
of a logarithm of the determinate of a Toeplitz matrix, a
necessary condition for Szegd’s theorem. However, if the
covariance matrix, R,, of the input vector, x, is carefully
chosen, then the product MR, M7 will be Toeplitz for all
n and the eigenvalues of R, which converge to the given
spectrum S, (™). In this case, the limit of the upper
bound will be equal to the integral on the right. This pro-
cedure is analogous to the Karhunen-Loeve expansion for
nonwhite noise [8, p. 398]).

This gives the following upper bound on the average
mutual information

1 i2nf i2af
K1) < % SO log <1 L 25:7)S,e )> of

N,
bits
symbol

M

The lower bound follows from the Entropy Power In-
equality for vectors [91, [11], [12]

2Q2/mh(y < 2(2/n)h(z) + 2(2/n)h(er)

or

v

Wy = 5 log (reN,M]!/" + 207700

which holds for x independent of z. Using the identity
h(Mrx) = h(x) + log (|Mz])
give the bound

n 2(2/n)h(x)lMTl1/n>
: - +
Ix;y) < > log <1 eN,

on the mutual information. In the limit, the lower bound
on the average mutual information

2h(0 + g log (Sp(e> ) df
weN,

1
IX; Y) = Slog {1+

bits
symbol

®

As an example of the bounds (7) and (8), consider an
input vector x that is independent, identically distributed
(i.i.d). If the vector is zero-mean Gaussian with variance
P, x ~ N0, P), then

h(X) = 1 log @meP),  S.(e”7) =P

and

1 2P ¢ 2nf
21 1 + == plolog(Sprte ))df>
2 8 ( N,

o

1
1 I
<IX;Y) = 5 SO log (1 + E S,,T(ezf)> df.

In the case that S,,T(eiz"f ) = C, a constant, the bounds
meet and

2PC >

1
I(X;Y)=§log<1 + N
0

Similarly, if the vector is uniformly distributed, x ~

Uur- \/I_’, \/I_’], then

4 P
h(X) = log @VP),  S.(e™™) = 3
and
1 4P i s
— + — zfolog(spr(e Ndf
2 log <1 meN,
1
1 2P .
=IX%Y) =3 SO log <1 + gﬁos,,,,(e”)> df.
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When S,,,(eiz"f ) = C, a constant, the bounds fail to meet
and

Log (1 4+ 2E€ X V) = |+ 2PC
2 %8 weN,) = ;1) =308 N, )

Note that the upper and lower bounds differ by a factor of
Te/6 = 1.423 - -+ = 1.53 - - - (db) in signal-to-noise
ratio.

B. Capacity

The information capacity determines the limit on the
density at which reliable storage is possible. This limit is
determined by maximizing the average mutual informa-
tion normalized by the symbol period, Q/DIX; Y)
(bits /second). For the channel described by (4), the ca-
pacity, for a fixed period T, is the limit

bits
second

. 1 .
Cr = lim max — I(x; y) %a)

n—>o  pn
where B, is the set of allowable distributions on the input
vectors x. If no constraint were placed on the input, then
the capacity would be infinite. For saturation channels,
the input vectors are constrained to lie on the vertices of
an n-cube ‘

B, = {fr@lx e {-VP, +P} (9b)

(i.e.,eachx; € {— JP, +~/I"}). The capacity of the chan-
nel is then determined by maximizing over the symbol
period

bits
C=supC —.
r>% T second
It is not hard to argue that for any positive integer L, the
inequality Cr < Cr/y holds. This implies that the capacity
is obtained in the limit as the symbol period T goes to
Zero

C = lim Cr s
T>0 second

Determining the exact value of the capacity Cror C for
the constraint described by (9b) is a difficult open prob-
lem. However, a recently proven lemma provides a
method for obtaining useful bounds on the capacity [1].
The present paper uses this lemma to obtain bounds on
the capacity of saturation recording.

In pursuing upper and lower bounds, it is useful to con-
sider two related measures of capacity. These notions of
capacity are obtained by weakening the constraint im-
posed by the saturation channel (9b). The peak power ca-
pacity and average power capacity are given by:

— 1 bits
C% = lim max — I(x;
=) nT( ) second’
Yo 1 bits
C% = lim max — I(x;
T e nT( y) second

_— bits
c? = lim CT

T-0 second

— bits
C? = lim C7

T-0 T second

where

B = {fxolx € [~ VP, +VPI'},

B = ifx(x)lxx' = Zxj = nP}
2

Note that each constraint can be described in terms of
power. For the average, peak power and saturation con-
straint

n l+m—1 1 t+m
~ 2 x;=P
m j=1
forall = l=sm+1l=n In this respect, the saturation
requirement can be described as a constant power con-
straint. From this, it follows that

B, C BL C B
this in turn implies

Cr < Ch = C7 and C=<Ch<C

The upper bound on the capacity C of the saturation
recording channel is obtained by the average capacity
bound C*. This bound is obtained by maximizing the up-
per bound on the mutual information given by (7). The
maximization involves the proper choice of input power
spectral density, Sx(eiz"f ), subject to the average power
constraint.

The lower bound is obtained by maximizing the lower
bound on the mutual information given by (8). However,
it is not hard to show that the differential entropy, h(x) =
— oo, for discrete random variables. This means that for
distributions on the n-cube, such as those described by
(9b), the lower bound (8) is trivially equal to 0 since h(X)
— —oo. Fortunately, the beautiful lemma 1 of [1] proves
that if the channel impulse response is square integrable

400
S h(r)? dt < o

— 00

then the peak power capacity is equal to the capacity of
the saturation recording channel

c=2C

Essentially, it is shown that for any square integrable im-
pulse response h(t) and any symbol period T, there is an
integer L such that Cr/p = C%. Thus, the capacity of the
saturation recording channel can be lower bounded by
finding a good lower bound to C%. This is accomplished
by maximizing the lower bound on the mutual informa-
tion given by (8).

Without reproving lemma 1 of [1], the essence of the
proof can be seen by the following loose argument. Con-
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sider any signal of the form of (1):
n
x(t) = 21 x;B(t — jT)
j=

where the symbols are bounded —JP < Xp < ++/P.
Assume the channel impulse response, h(t), is square in-
tegrable. The signal component of the sampled output of
the matched filter receiver, matched to pr(¢), is the vector
Mrx. The n X n matrix, My is given by (4) in terms of
samples of the autocorrelation function R,,(7)

My = {mij}Osi,j<na

nmy = S . pr(@ — HT + Hpr(2) dt.

Then given Myx, for any bounded x, there is an integer L
and a saturation signal

Ln

%) = 2 &Bry(t = jT/L)

(with symbol period T/L and symbols % € {— JP,

++/P}) such that the n samples of the output of the filter

matched to pr(¢) is close to the vector Mrx. Specifically,

for any € > 0, there is an L (which depends only on h(t)

and e and not x and n) such that the mean squared error
”MTx - MT/quz < ne.

Here the n X nlL matrix

My = {mij}lsisn,lsjsnb

+oo
fy = S . pr(G — j) T + 1) pry(t) dt
is equal to samples of the cross correlation of pr(t) and
pr/i(t).

This result says that for any bounded signal with period
T, the sampled output of the matched filter can be accu-
rately approximated by a saturation signal with a smaller
symbol period T/L. In practice, this result suggests that
it may be advantageous to use a signaling period, in the
write process, which is smaller than the sampling period
in the read process.

C. Bounds on Capacity

Bounds on the capacity of saturation recording are ob-
tained by combining the upper and lower bounds on the
mutual information with the results on the channel capac-
ity.

The upper bound on the capacity follows from the fact
that the capacity of the average power constrained chan-
nel bounds the capacity of the saturation channel, Cr <

2and C < C*. The usefulness of this inequality follows
from the fact that the capacity of the average power con-
strained channel is known and can be readily computed
[8, Ch: 7 and 8]. The upper bound on the average mutual
information (7) is achieved with equality by a Gaussian
, process with a specified power spectral density S, (e”*™).

Note that such processes generate random vectors X that
satisfy a power constraint but not a saturation (or peak
power) constraint.

The calculation of the capacity C% becomes one of
maximizing the upper bound (7)

1 28 i2zf ST i2zf
I(X; Y) = % SO 10g <_X_(e_%l’_(e—2> df

o

subject to the power constraint

1
S S.(e™) df = P.
0

The solution is known as water filling. Write the mutual
information

28, (e™™ )> i

1
1 ( 1
- = — - +
I(X, Y) 2 SO log \Spr(eﬂ‘lrf) No

1 : i2m)
+3 SO log (S,,(e™™)) df.

The second term is independent of the choice of the input
spectrum S, (e™™). The first term is maximized by trying
to make the expression that appears in the logarithm equal
to a constant. This is not always possible, e.g., when the
pulse power spectrum, Syr(e 2nf ), has a zero; this condi-
tion holds for the differentiated Lorentz channel with
spectrum given by (5) since Sp,(e’z’rf) =0 forf=0.
The water-filling solution is best described by the level
parameter 0 < A < . Define the set of frequencies

(10a)

Ay = {—3 = f< 3N, (e7) = 1}

where the level \ exceeds the inverse of the pulse spec-
trum 1/ Spr(e’z"f ). The optimal input spectrum, for the
given level A, is given by

N, 1 >
= — &, 2\ |’ € A i
Sx(ei27rf) — 2 < Spr(etl‘nf) f i

0 : otherwise.
Then the capacity, in terms of the parameter A,
1 .
Cr=Ci== S log (\S,.(e*™)) df ~ (10b)
2T An

(10c)

°
1]

P 1 1
ﬁo =3 SAA (Spr(ei27r/)_> df

where p is the channel signal-to-noise ratio.
In the limit, as T — 0, the channel capacity is bounded
by

C=C'= % S log (N H(HP) df (11a)
P 15( 1 >

=—=z N———>m)d 11b

S M G 75T A A
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where H( f) is the transfer function of the recording chan-
nel (i.e., the Fourier transform of the channel impulse
response) and

Ay = {—o < f< o NHIF = 1}, (1o

The lower bound on the capacity of the saturation re-
cording is obtained by finding a lower bound to C? and
by using the fact, proven in [1], that C = C?. For a given
symbol period, (8) provides a lower bound on the infor-
mation per symbol in terms of the average differential en-
tropy h(X). In the peak power case, it is easy to show
that:

h(X) < log 2P

with equality if and only if the input vector x is drawn

i.i.d., uniform on the interval [— \/;’, «/I_’]. Thus, substi-
tuting this best lower bound [(in terms of A(X))]

1 4P _o
C=Ch=—log (1 +——"2kleneNd
‘ T=or °g< 7 TeN,
bits (12)
second

Note that while C? is equal to the limit of Cras T = 0,
the best lower bound (in terms of T) on the capacity will
be provided for a positive symbol period 7*. (In fact, the
lower bound approaches zero as the symbol period goes
to zero.) Thus, the best lower bound on the capacity

1 4P _ o ;
C=CP = —1 4 — §olog (Sp;(ei™))df
2T+ 8 <1 weN,

o

bits
second

(13)

where T* > 0 is the symbol period that maximizes the
lower bound (12).

Equations (10) and (11) provide upper bounds on the
capacities C; and C, respectively, while (13) provides a
lower bound to the capacity C. Note that, while (12) lower
bounds the peak power capacity C%, it does not provide a
lower bound to Cy. While the question of a good lower
bound to Cr is not addressed here, progress on this prob-
lem can be found in [15].

III. CoMPUTING BOUNDS ON THE CAPACITY
A. Bounds on Capacity—Differentiated Lorentz Channel

The derived expressions (10), (11), (13), provide a
method for obtaining bounds on the capacity of a partic-
ular recording channel with a given the channel impulse
response h(z). In the case of the differentiated Lorentz
channel, we have from (5)

lH(f)l2 = 47(4 Ze~47r|f|

and

spT(eiZWf) —

Using this model, the upper bounds to Crand C and the
lower bound to C are computed as a functjon of the chan-
nel signal-to-noise ratio p.

For example, to compute C* for the differentiated Lor-
entz channel, we first note that | H( f )|? has a maximum
at f = 1/27 and that | H(1/2m)|* = «*/e®. Thus, the
level parameter e’ /7> < A\ < oo. The function |H(H|?
is monotonically increasing on the interval 0 < f < 1 /2m
and monotonically decreasing for 1/2% < f < oo. Thus
the water-filling frequencies are the union of two intervals

A}\ = [—-fl’ _ﬁ)] U [anfl]

where 0 < fy < 1/27 < f; satisfy. the equation

f; = 4—_14A e?ﬂ'fi’ l = 0, 1.
J s

Note that this equation can be iterated to find f; and f;.
Given the endpoints, it follows

Cc* =2log Ix(fi — fo) — (i — f)

and

1/fo

£ / e47r/x dx.

N, t/fi

This last integral can not be obtained in closed form and
must therefore be compyted numegrically. Similarly, when

4 is to be computed, the water-filling frequencies are the
union of two intervals described by 0 < f, < fi < 3 where
f, = 3if N = Tsinh 2« /T)/4x*. Fig. 3 shows the water-
filling spectrum for the case p = 10 (db) and T* = 1.14
(the best symbol period for the lower bound). In this case,
N = 22.46.

The fourth figure (Fig. 4) shows the computed values
of the upper and lower bounds to the channel capacity, C
as a function of the channel sigpal-to-noise ratio p.

The following figure (Fig. 5) depicts the upper and
lower bounds to C% as a function of the symbol period T
for a few values of the channel signal-to-noise ratio p.
Note that the upper bound on the saturation capacity C is
obtained as the limit of the upper bound C7as T — 0.
However, the lower bound to C is the maximum of the
lower bound to C%. This maximum is obtained for a pos-
itive symbol period T* (i.e., T* is the value of T where
the lower bound curve peaks).

In numerically computing the lower bound (13), the in-

1
Zk(ﬁ_ﬁ))—ms

T =
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Fig. 3. Waterfilling differentiated Lorentz channel [T* = 1.14, A = 22.46,
o = 10 (db)].
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0. . 6589 1.51 .1850 -8.79
10. 1.922 1.13 .8922 -B.06
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40, 10.17 0.50 7.621 -7.63
50. 14,27 0.42 11.25 -7.61
60. 18.95 0.36 15.54 -7.60
{db) (bpe) {sec) {bps) (db)

Fig. 4. Capacity versus p, differentiated Lorentz channel.

tegral

1
50 log (S,,(*™)) df

needs to be estimated. This seems to pose a numerical
problem since the pulse spectrum, S,,(e>™), has a root at
f = 0 (4r sin* 27f) is a factor) and log (0) = —oo.
However, this factor can simply be ignored in the calcu-
lation since {} log (4= sin? 27f)) df = 0.

Also shown on Fig. 5 is the trivial upper bound

CTS?.

This follows from the simple fact that the binary input
signal, in (1), can convey at most one bit of information

(e { +VP, —JP}).

T

Rate (bit/sec)

7 4 T
P =30 (db)

6 P, =20 (db)
P =10 (db)

=

0 T 1
1 2
T (sec)

Fig. 5. Bounds versus 7, differentiated Lorentz channel.

The best value of the symbol period, T*, for the lower
bound is displayed in Fig. 6 as a function of p.

Finally, the upper and lower bounds are compared in
terms of a loss in signal-to-noise ratio in Fig. 7. The power
loss is defined as follows. Given a value of signal-to-noise
ratio p, first compute the lower bound on the capacity C.
Let this lower bound rate be R. Then, the value of signal-
to-noise ratio p* required for the upper bound to meet the
rate, R, of the lower bound is computed. The power loss
is then defined as the ratio p*/p. It is interesting to ob-
serve that the power loss approaches 2e / 7} = -7.56
(db) as p — oo. This is the same result that is obtained
for high signal-to-noise ratio in the strictly lowpass ex-
amples computed in [1].

B. Bounds on Capacity—Applications

Bounds on capacity of saturation recording have been
presented in Section III. The usefulness of the results fol-
lows from the fact that they can be computed from mea-
surements on an actual recorder. In order to evaluate the
bounds on capacity, estimates of the channel response and
the operating signal-to-noise ratio are required.

In the saturation recording systems, the response of the
system is often characterized in terms of the step response

g(t) = S h(r) dr-

of the channel. Note that, in terms of the step response,
the filtered version of the input signal

(@) = h*xx(t)

i

2 pr(t = jT)

I x(g =) = gt = (G + D)

n
= P x — x-)g — JjI).
There are numerous methods for obtaining such estimates
of g(¢). They range from the simple procedure of aver-
aging the response to isolated transitions, to procedures
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T (sec)

-20 0 20 40

60
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Fig. 6. T* versus p, differentiated Lorentz channel.

such as recursive least-squares approaches used in adap-
tive signal processing areas (see, for example, [13], [14]).
These issues are beyond the scope of the present discus-
sion. Given the response g(¢), the pulse response p;(t) =
g(t) — g(t — T) is readily obtained and the bounds, such
as Fig. 4, can be computed from (10), (11), and (13).
This was done for the Lorentz example of Section HI-D.

Once an estimate of the step response is determined,
the channel signal-to-noise, p, can be estimated. Consider
the situation of an isolated transition

+VP k=0
. {—\/F k <0,
or .
£(t) = 2NPg (1) + 2(0).

If the output signal y(z) is passed through a filter matched
to the step response g(¢) and sampled at time 0, the fol-
lowing is observed:

@+2)*g 0 =2vPlgl*+w

v + v~ = 2 cosh 27ax),

'YX

155

Power Loss (db)

.7T

60
P (db)

Fig. 7. Power loss versus p, differentiated Lorentz channel.

20 40

and the variance, o2 = N, || g I*/2, the channel signal-to-
noise ratio

P m?

N, 8a’lgl’

is obtained. This value of p can then be used in conjunc-
tion with the curves derived from the estimated step re-
sponse to obtain the upper and lower bounds on the ca-
pacity. Note that scale factors involving the estimated step
response cancel. For example, if the estimated response,
g(t) = 2g(t), then the p-axis of the capacity curve (e.g.,
Fig. 3) is shifted by 6 (db). However, this effect is can-
celed when the signal-to-noise ratio is estimated since
(m* /8021 g|I*) will be 6 (db) lower. This follows from
the fact that the ratio m? /o> = 8P| g||* /N, does not de-
pend on the scaling of g(¢).

p =

APPENDIX

The expression for the pulse spectrum, S, (e*™), for the
general Lorentz model, pr(1) = g,(t) — G.(t — T), fol-
low from the following identities. Let y = €™, 8 =
&7 then

— v = 2 sinh 27ax)

B — 87" = 2isin 2w7x)
S22 cosh Qua(f — 1/2)

B+ B = 2 cos 2m7x),
Aly) = 2 0= ¥
=== Y
B@B.v) = 2 sen(f- Hg/~hli=l =

12 _

y 12 sinh (7a)

e B0 Bl i € e )
o=y B -8

B =B8N+ H - =BT v

B(B,v) - BB ', y) =

v'7? -

Yy —B-8Y

Y sin 277f) .cosh Qaa(l = f)) + sin Qar(1 — f)) cosh 2waf)

where the step response energy

lgl? = S g} dr

and w is zero mean and has variance N, | g||*/2. By es-
timating the mean of the sampled output, m = 2 JVPlgl?,

cosh 2ma) — cosh 277)
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