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Abstract- In this paper,  it is proved that any  algehraic- 
geometr ic code can be  expressed as  a  cross section of an  extended 
multidimensional cyclic code.  Both algebraic-geometric codes and  
multidimensional cyclic codes are descr ibed by  a  unified theory 
of l inear block codes def ined over point sets: algebraic-geometric 
codes are def ined over the points of an  algebraic curve, and  
an  m-dimensional cyclic code is def ined over the points in m- 
dimensional space.  The  power  of the unified theory is in its 
description of decoding techniques using GrSbner bases.  In order 
to fit an  algebraic-geometric code into this theory, a  change  of 
coordinates must be  appl ied to the curve over which the code 
is def ined so that the curve is in special position. For curves 
in special position, all computat ions can be  performed with 
polynomials, rather than rational functions, and  this also makes 
it possible to take advantage of the theory of Grobner  bases.  
Next, a  transform is def ined for algebraic-geometric codes which 
general izes the discrete Fourier transform. The  transform is also 
related to a  GrSbner basis, and  is useful in setting up  the decoding 
problem. In the decoding problem, a  key step is finding a  GrSbner 
basis for an  error locator ideal. For algebraic-geometric codes,  
multidimensional cyclic codes,  and  indeed, any  cross section of 
an  extended multidimensional cyclic code,  Sakata’s algorithm 
can be  used to find linear recursion relations which hold on  the 
syndrome array. In this general  context, we give a  self-contained 
and  simplified presentat ion of Sakata’s algorithm, and  present 
a  general  f ramework for decoding algorithms for this family of 
codes,  in which the use  of Sakata’s algorithm is supplemented by  
a  procedure for extending the syndrome array. 

Index Terms- Algebraic-geometric codes,  multidimensional 
cyclic codes,  GrSbner bases,  transform methods, Sakata’s algo- 
rithm. 

I. INTRODUCTION 

M  ULTIDIMENSIONAL cyclic codes and algebraic-geo- 
metric codes have played a more prominent role in the 

theory of error-correcting codes in recent years, and there is 
hope that these codes will be used in applications in the near 
future. These two families of codes have followed divergent 
approaches in their generalization of Reed-Solomon codes, 
and this has led to the development of two distinct bodies 
of research. In this paper, we present a unified theory for 
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a new class of codes which includes both multidimensional 
cyclic codes and algebraic-geometric codes. Under the unified 
theory, the relationship between multidimensional cyclic codes 
and algebraic-geometric codes can be made explicit, and the 
decoding algorithms for the two families of codes can be 
described under a common framework. 

The unified theory provides an interesting new perspective 
on algebraic-geometric codes, and therefore we find it worth- 
while to review some previously known results. In particular, 
we give a new presentation of Sakata’s algorithm and its 
use in implementing decoding algorithms. Although this paper 
contains large amounts of survey material, it also presents two 
new techniques which may prove to be quite useful in the 
implementation of algebraic-geometric codes. 

The first technique is the use of a  change of coordinates 
to give an alternative presentation of an algebraic-geometric 
code in which the representation and calculation of algebraic- 
geometric quantities is simpler, and the code is in a form 
suitable for decoding. In the new coordinate system, we 
need only consider polynomial functions in affine coordi- 
nates, rather than dealing with rational functions in projective 
coordinates. 

The second technique is the definition of a  transform, 
generalizing the Fourier transform, which may be used with 
an algebraic-geometric code (or any of the codes in the 
broader class of codes described by the unified theory). The 
transform may be described as an infinite m-dimensional 
array with redundancy, which is completely determined by a 
finite irredundant subarray, called the proper transform. This 
situation is well-known in the decoding algorithm introduced 
by Feng and Rao, where certain elements of the syndrome 
array are constrained to satisfy a consistency relation. Now, 
with the theory of the generalized transform, it is possible 
to precisely delineate an independent set of syndromes, and 
state consistency relations which will determine the dependent 
syndromes. The basic idea behind the transform is that the 
consistency relations should be represented by polynomials 
which form a Grijbner basis for a  certain ideal. 

II. GROBNER BASES 

In this section, we give a brief exposition of Grijbner bases, 
which have proved to be a useful tool both in the theory of 
multivariate polynomials, and in computations involving them. 
For more details, see [l]-[3]. 
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Let IF be any field, and consider the ring IF[s] = 
F[Xl,. . . , z,] of polynomials in m  variables over the field 
IF. A monomial 2’ is a product of powers of variables, x’ = 
Q+ . ..x 2 ; a  polynomial is a  finite linear combination 
of monomials 

Here, T  = (rr, rz,... , r,) is an m-tuple of nonnegative 
integers, and we denote by ZI;I the set of all m-tuples of 
nonnegative integers. 

Write r 5  s if r; < si for each i = 1, 2,. .. , m. This 
indicates that the monomial 2’ divides P, and so we refer 
to 5 as the divisibility order. Monomials are considered to 
be ordered according to their exponent vectors: thus we say 
Z’ 5 x8 if and only if T  5 s. For m  > 2, the divisibility order 
is only a partial order on Zl;l: for example, ~1 and 1%~ are not 
comparable under the divisibility order. 

Define a monomial order on ZT  to be a total order IT 
with the property that r IT s whenever T  5 5. Thus 
a monomial order is a total ordering which preserves the 
divisibility order. Well-known examples of monomial orders 
are the pure lexicographic order, the graded lexicographic 
order, and weighted-degree orders. 

The leading monomial of a  polynomial 

(with respect to the monomial order <T) is the monomial 
xs with nonzero coefficient (fs # 0) that is maximal in the 
order IT. For a polynomial f(x) we define leads,(f) = s, 
where xs is the leading monomial of f(x) with respect to the 
monomial order 5~. The leading coejjicient of a  polynomial 
is the coefficient of its leading term, and is denoted by lc (f). 
In other words, if lead(f) = s, then lc (f) = fs. 

Definition I: Let 3  be any subset of the ring IF[s] and let 
ST be a monomial order. Define 

A<,(3) = {s E Zl;l: leads, (f) $  s for each f E 3). 

(We will write simply A(3) if it is understood which mono- 
mial order <T is used.) Thus A+ (3) consists of all exponent 
vectors s for which x8 is not divisible by the leading monomial 
of any member of 3. 

Definition 2: A set A c Z’T is called a delta set if it has 
the following property: whenever s E A and T  5 s, it follows 
that r E A. 

Dejnition 3: An interior corner r of A is a integer vector 
T  E A which is maximal in the divisibility order. That is, 
there does not exist s E A with r < s. An exterior corner 
s of A is an integer vector s 6 A which is minimal in the 
divisibility order. That is, there does not exist T  6 A with 
T  5 s. The set of interior corners of a  delta set A is denoted 
by Int A, and the set of exterior corners of a  delta set A is 
denoted by Ext A. Thus a delta set is completely determined 
by its exterior comers, since we can write 

A={T: u$, foreach nEExtA}. 

Note that for any set 3, A<,(3) is a  delta set. 

Let 1  be an ideal in the ring IF [x] and 3 be a finite subset 
of I. We  say that 3  generates I, and write I = (3), if any 
element of I can be written as a finite linear combination (with 
polynomial coefficients) of elements of 3. 

Dejinition 4: A set 3 c I is a  Griibner basis for I (with 
respect to the monomial order IT) if AIM = A,,(I). 

In other words, the leading monomial xf of every polyno- 
mial g(x) E I is divisible by the leading monomial x8 of 
some polynomial f(z) E 3. We  have the following two basic 
results about Grobner bases: 

1) W ith respect to any monomial order <T, an ideal I has a 
Grobner basis 3. (In general, 3  depends on the choice 
of monomial order.) 

2) A Grobner basis 3 for I generates I as an ideal: 
I = (3). 

Let an ideal I and a monomial order IT be given. If 
r E Al, (I), then x’ is called a standard monomial; otherwise 
xr is called nonstandard. A polynomial which is composed of 
only standard monomials is said to be in normal form. Let 
f(x) E lF[x], and suppose there is a polynomjal f(x) that is 
in normal form with the property that f(x) = f(x) mod I (the 
means that f(z) = T(x) + g(x) for some g(x) E r>. Then f 
is called a normal fomz of f with respect to the ideal I (and 
the monomial order <T). It is not hard to prove that every 
polynomial f has a unique normal form 7. Thus in the ring 
F[x]/I, each coset of I has a unique representative 7 which 
is in normal form. In particular, the zero polynomial is in 
normal form and is a representative of I, and so a polynomial 
is a  member of I if and only if its normal form is zero. 

III. ALGEBRAIC-GEOMETRIC CODES 

Before giving a definition of an algebraic-geometric code, 
we give a brief review of the notation and concepts from 
algebraic geometry we shall need later. We  concentrate mainly 
on affine algebraic curves, since our goal is to apply a change 
of coordinates to a projective curve X to obtain a curve 
X’ which is essentially affine in the sense that all of the 
calculations relevant to coding theory can be carried out using 
the affine description of the curve. Fulton [4] is an excellent 
introductory reference for the material in this section, and more 
advanced treatments may be found in [5]-[8]. 

An algebraic curve X is usually presented as the solution set 
of a  system of polynomial equations. A more precise definition 
is the following. Suppose that F  is an algebraically closed 
field. For any ideal I in the ring IF[x] of polynomials, define 
the variety of I, V(I), to be the set of m-tuples P E IF" 
such that f(P) evaluates to zero for every f E I. A set X 
of the form X = V(I) for some ideal I in the ring IF [x] is 
called an afJine variety defined over F. (Terminology varies 
in the literature; here we follow the convention of [2].) In 
particular, m-dimensional afine space, which is the set of all 
m-tuples, ff m, is the variety F” = V( { 0)). Corresponding to 
any affine variety X is the ideal I(X) consisting of the set 
of polynomials f(x) which vanish at every point of X. An 
affine variety X is irreducible if it cannot be decomposed into 
the union X = Xr U X2 of two disjoint affine varieties X1 
and Xz. The ring IF[X] = IF[x]/I(X) is called the coordinate 
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ring of X. A polynomial function on X is a function 4(x) 
which maps points of X to values in F, and which can be 
represented as evaluation by a polynomial: 4(x) = f(x) 
for some polynomial f. Two polynomials f(x) and g(x) 
represent the same polynomial function if and only if f(x) = 
g(x) mod I(X), and so polynomial functions can be identified 
with elements in the coordinate ring IF [Xl. Applying the results 
of the previous section, we find that every polynomial function 
is uniquely represented by a polynomial in normal form 
(once a monomial order has been fixed). Assuming that X is 
irreducible, the coordinate ring F  [X] is an integral domain, and 
its field of fractions is called the field of rational functions on 
X, denoted by IF(X). The field IF(X) of rational functions on 
X consists of the set of all fractions f(x)/g(x), where f/g and 
f//g’ are considered to be equivalent if f g’ - f’g E I(X). If 
4  E [F(X) is a rational function on X which can be represented 
as f(x)/g(x) where g(P) # 0, then 4 is defined at P, and we 
define $(P) = f(P)/g(P). The set of all functions Q, E IF(X) 
defined at P is a local ring OF(X). The point P on X is 
nonsingular if and only if c?p(X) is a discrete valuation ring, 
and the variety X is smooth, or nonsingular, if every point 
on X is nonsingular. The field IF(X) of rational functions on 
X is a field containing F  as a subfield, and the dimension of 
X is the degree of transcendence of F(X) over IF. An afJine 
algebraic cume is a one-dimensional irreducible affine variety, 
and a zero-dimensional affine variety is always a finite set of 
points. 

Now let F, be the finite field with q elements, and let 
F  be the algebraic closure of F,. Suppose X is an affine 
algebraic variety defined over IF. If I(X) is generated by a 
set 3  which consists of polynomials with coefficients in IF,, 
then X is defined over IF,. Define the Jield of IF,-rational 
functions on X to be the subset IF,(X) of IF(X) consisting 
of all functions which can be written in the form f(x)/g(x) 
where f and g have coefficients from F,. If P is a point on 
X with coordinates in IF, (P E X n I=:), then P is called 
a rational point of X. 

The proper setting for algebraic geometry is in m- 
dimensional projective space P”, which consists of points 
P 7 (ao: al:. . . : a,), in which the a; E F  are not 
all zero, and with (aa: al:...:a,) and (ba: bl:...:b,) 
representing the same point whenever there is a nonzero 
X E IF such that ai = Xbi for all i = 0, 1, . . . , m. Throughout 
this paper, we identify a point P in m-dimensional affine 
space P = (al, . . . , a,) E IF” with the point P = 
(1: al:... :a,) E P” in m-dimensional projective space. 
The set of points (au: al: . . . : a,) with aa = 0 forms the 
“hyperplane at infinity,” and m-dimensional projective space 
is the result of adjoining the points at infinity to m-dimensional 
affine space. For any set 3  of homogeneous polynomials in 
the variables x0, x1, . . . , xm, we may define the projective 
variety of 3 to be the set V,(3) of points P E $” such 
that f(P) = 0 for all f E 3. A polynomial f(xr, . .. , xm) 
in m  variables can be made into a homogeneous polynomial 
f*(xo, Xl,“’ ,x,) in m  + 1 variables by multiplying each 
monomial of f by the power of x0 which yields a monomial 
whose degree is the same as the total degree of f. If X, is 
an affine curve, X, = V(I,), then we may form the ideal 

I = {f*: f E I,}, and define the projective closure X of 
X, by X = V,(I). The projective closure X is the smallest 
projective variety containing X,. For a complete development 
of algebraic geometry in projective space, consult any of the 
standard textbooks: for example, [2], [4], [6]-[8]. We  remark 
that every rational function on X corresponds to a unique 
rational function on X,: F(X) %  iF(X,). 

Let X be a smooth irreducible projective curve defined over 
IF,. A divisor on a curve X is a formal sum 

G= CgrP 
PEX 

with integer coefficients gp E Z, ony finitely many of which 
are nonzero. The support of a  divisor G is the set {P: gp # 
O}. The degree of a  divisor G is the sum 

degG= c gp. 
PEX 

A divisor is called effective, written G 2 0, if gp > 0 for 
all P. Since the curve is smooth, at any point P, Op(X) is a 
discrete valuation ring, and thus there is a discrete valuation 
ordp which gives the order ordp C$ E Z  of a  rational function 
$ at P. If ordp 4 = a > 0, then 4 is said to have a zero 
of order a at P (in particular, this means that 4(P) = 0). If 
ordp 4 = -a < 0, then 4 is said to have a pole of order at P. 
Associated with a nonzero rational function $ is the divisor 

(4) = c ordp 4. 
PEX 

Associated with any divisor G is the vector space L(G) of 
rational functions on X with poles “no worse than G’ 

L(G) = (4 E F,(X): (4) + G 2 o} u (0). 

In general, the dimension of the vector space L(G) is given 
by the Riemann-Roth theorem, but usually the following will 
suffice: 

Theorem 5 (Riemann’s Theorem): If deg G > 2g - 2, then 

dimL(G) =degG-gfl 

where g is a nonnegative integer called the genus of the curve 
X. 

There are several equivalent ways of defining the genus g 
of a  curve X, but perhaps the most elementary is to define 
g to be the maximum value of deg G + 1 - dim L(G) as G 
ranges over all divisors on X. 

Let X be a projective curve, and let Q be a point of X. 
For some values of the integer j, there are no functions C$ 
in L(jQ) whose pole order at Q is exactly equal to j. In 
other words, L(jQ) = L((j - l)Q). In this case, j is called 
a Weierstrass gap, or simply a gap, of Q. Any integer j > 0 
which is not a  gap of Q is called a nongap, and it follows 
from an elementary argument that in this case, 

dimL(jQ) = 1 + diml((j - l)Q). 

By induction, it follows that dim L( a&) is equal to the number 
of nongaps j < a. The following result is an immediate 
corollary of Riemann’s theorem. 



1736 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 6, NOVEMBER 1995 

Proposition 6: For a curve X with genus g, and a point 
Q E X, there are exactly g gaps, and each gap j satisfies 
j < 29. 

Let N(Q) c Z  be the set of nongaps of Q. It is always 
the case that 0  E N(Q), since the constant functions are 
in L(aQ) for all a. If 4  E L(aQ) is a function with pole 
order a, and ?1, E L(bQ) is a function with pole order 
b, then @J E L((a + b)Q) is a function with pole order 
a + b. Thus N(Q) is a semigroup: it is closed under addition 
(but not under subtraction). We  say that a  set of integers 
(01, 02,“’ , om} c Z  generates N(Q) as a semigroup, and 
write N(Q) = (01, . . . , om), if any a E N(Q) can be written 
as 

a= 2 rioi 
i=l 

for some T  E Zy . We  say that 01, 02, . . . , om is a minimal set 
of generators for N(Q) if N(Q) is not generated by any set 
of cardinality less than m. 

A minimal generating set for the semigroup N(Q) has at 
most g + 1 elements, because the set {or, 02,. .. , o,+r} of 
all nongaps < 2g + 1 always generates the semigroup N(Q) 
[9], [lo]. The worst case, in which a minimal generating set 
actually has g + 1 elements occurs only when the set of gaps is 
(1, 2,. . . , g}. It will be desirable to minimize the size of the 
generating set for the semigroup N(Q), and therefore it will 
be desirable to choose Q so that its set of gaps is different 
from (1, 2,...,g}. 

We  review briefly the definition of algebraic-geometric 
codes as introduced by Goppa [ 1  I], and subsequently detailed 
in [5], [9], [lo], [12]-[16]. Let X be a smooth irreducible 
projective curve defined over F,. Let PI, . . . , P, be rational 
points of X, and let D = PI + + . . + P, and G be divisors over 
X with disjoint supports. Then we may define the algebraic- 
geometric codes CL (D, G) and Co (D, G) as follows: 

CdD, G) = {(4(Pd, ... ,$(Pn)): 4  E ~79) 

CdD, G) 

= c E IF:: kc.j4(Pj) = 0 for all 4~ L(G) . 
j=l 

(Here, we define Co(D, G) simply as the dual code of 
Ch(D, G), although it can be explicitly constructed in terms 
of differentials on X). Assuming that deg G = a, with 
2g - 2  < a < n, where g is the genus of the curve X, the 
parameters of these algebraic-geometric codes can be easily 
estimated by applying Riemann’s theorem [ 121, [13] 

CL(D,G): (n,a-g+l,d>n-a) 
Co(D, G): (n, n  - a  + g - 1, d  > a - 2g + 2). (1) 

The unified theory presented in this paper does not encom- 
pass algebraic-geometric codes in their full generality: our 
results are restricted to the class of one-point algebraic codes 
Ca(D, a&) defined by a divisor G which is a multiple 
G = a& of a  single point. However, this does not restrict our 
ability to design codes using (l), since the choice of divisor 
G affects the estimated parameters only through its degree a. 

IV. MULTIDIMENSIONAL CYCLIC CODES 
Let F$-l)x. .x(n-1) denote the set of m-dimensional ar- 

rays of size (q - 1) x . . . x (q - 1) with entries from IF,. Let 
i&i denote the set of integers (0, 1, . . . , q  - 2}, and Zpi 
denote the collection of m-tuples formed from this set. Then 
each word w E IF~-l)x”.x(q-l) is an m-dimensional array 
with entries w,. E IF, indexed by integer m-tuples, T  E “pi. 
Corresponding to the word w is the polynomial w(x) in m  

variables 

w(x) = c w,xr. 
~~~~~ 

The natural definition of an m-dimensional cyclic code is 
a subset C of I$‘-l)x’ ‘x(q-1) which is closed under m- 
dimensional cyclic shifts of its codewords. We  opt to give an 
equivalent definition which is more suited for our purposes. 
Let o  E IF, be a primitive root of unity of order q - 1, and 
for any r E “y-r, let Q’ denote the point 

Qf = (a?, . . . ) d-) E y. 

Dejinition 7: Let M  c Zy-r be a set of integer m-tuples. A 
su,,set C of &dx’ ‘x(q-l) ’ 

of size (q-1)9x... 
IS an m-dimensional cyclic code 

x (q- 1) if the polynomials u(x) associated 
with the words of C vanish at the points of associated with 
the elements r E M. In other words, for each a E C and 
r E M, we have a(d) = 0. This m-dimensional cyclic code is 
denoted by C = Cyc (M). The properties of multidimensional 
cyclic codes are studied in [ 171, [ 181. 

An algebraic-geometric code is based on the evaluation of 
certain rational functions on a finite set of points lying on 
an algebraic curve. The following definition gives a notation 
for defining linear block codes based on arbitrary spaces of 
functions evaluated on arbitrary sets of points. 

Dejinition 8: Let P be a finite set of points, P = 
{Pl,... , P,}, and let C be a vector space of functions 
mapping P to IF,. Then we define the codes 

CP, 4 = {($(Pl),.~.,dxPn)): 4  E L> 

WE 4 

= 

i 
c E IF:: gcj$(Pj) = 0 for all 4  E L . 

j=l 1 

The enumeration PI, . . . , P, of the points in P is not important 
here, so it becomes more convenient to index the coordinates 
of codewords in Cl(P, ,C) by the points of P rather than by 
the integers 1, . . . , 72. So we may write 

wp, q 

= 
i 

c E (IF,)?: C c&(P) = 0 for all 4  E L . 
PEP 1 

Now we are ready to redefine multidimensional cyclic codes 
as codes defined by evaluation of functions over a set of 
points. Let F4 denote the set of nonzero elements of IF,: 
I$ = IF,\(O). Also for M  c “y-r, let L(M) denote the 
linear space of polynomials spanned by the monomials x’ for 
T  E M. 
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Theorem 9: cyc (M) = @((F;F)“, L(M)). 
Proof A word w E Fy is- a  codeword in the m- 

dimensional cyclic code Cyc (M) if and only if ~(a~) = 0 
for all r E M, and w is a codeword in the code Cl((IFz)“, 
.C(A&)), if and only if 

c w-‘(P) = 0 
PE(F;)” 

for all T  E A/l. These are equivalent conditions, as the 
following calculation shows: for any T  E M, we have 

where we have made the identification wp = w,, when P is 
the point P = o?. n 

Dejinition IO: An extended multidimensional cyclic code is 
a code Ext Cyc (M) defined by 

ExtCyc (M) = Cl(Fy, L(M)) 

for some M  c Z>i. In the extended code, IFi is replaced by 
IF,, and so codewords have length qrn rather than (4 - l)m. 
Although the codewords of the extended code can be arranged 
in a fairly standard way as arrays of size 4 x . . . x q, the 
code is no longer closed under cyclic shifts, and although the 
codewords can be interpreted as polynomials, the code is not 
characterized by the zero set of these polynomials. 

The blocklength of an m-dimensional cyclic code Cyc(M) 
is (q - l)“, and its dimension is (q - 1)” - JMI. The 
blocklength of an extended m-dimensional code Ext Cyc (M) 
is qm, and its dimension is qm - )Mj. We  are able to compute 
the minimum distance of these codes in the following special 
cases. 

Example I (Reed-Solomon Codes): Let m  = 1, and 
let M  = (1, 2,...,r}, M+ = (0, 1, 2,...,~-}. Then 
Cyc (M) is a (q - 1, q  - 1  - T, T  + 1) Reed-Solomon 
code, and Ext Cyc (M+) is an (q, q  - 1  - T, T  + 2) extended 
Reed-Solomon code (obtained by extending Cyc (M)). 
Example 2 (Hyperbolic Cascaded Reed-Solomon Codes): An 
m-dimensional Hyperbolic Cascaded Reed-Solomon (HCRS) 
code is a code Cyc (Wd) and an extended HCRS code is a 
code Ext Cyc (Hd), defined from the set 

j&i - 1) < d}. 
i=l 

An HCRS code Cyc (Hd) has minimum distance d* > d, and 
d* > d if and only if Hd = Hd* [19]-[21]. (The same holds 
for extended HCRS codes.) One-dimensional HCRS codes are 
Reed-Solomon codes, and one-dimensional extended HCRS 
codes are extended Reed-Solomon codes. 

Let e  be a subset of P. The relationship between the codes 
C(P, L) and C(Q, L) is simple: the codewords of C(&J, C) 
are obtained by puncturing the codewords of C(P, C): take 
a codeword c E C(P, G) and omit the coordinates cp for 
each point P $ Q. Starting with the code Cl(P, C), we 
may consider the subcode consisting of those codewords c 
for which cp = 0 for each point P 6 Q. By deleting the 
coordinates cp for P 6 &J in each codeword in this subcode, 
we arrive at the code Cl (&, ,C). Following the terminology of 
MacWill iams and Sloane ([22, p. 29]), we say that Cl (G!, L) is 
obtained from Cl (P, L) by taking a cross section. Conversely, 
a  codeword c in the code Cl( e, ,C) can be extended to a 
codeword in Cl(P, C) by setting cp = 0 for each point 
P E P not in e. In this way the code Cl( Q, C) can be 
identified with the subcode of Cl (P, C) consisting of those 
codewords c for which cp = 0 for each point P @  Q. 

For any subset P of ‘Fy, we note that the code 
‘% ‘> L(M)) 1s obtained by taking a cross section of 
the extended multidimensional cyclic code Ext Cyc (M) = 
c+, C(M)). In particular, m-dimensional cyclic codes 
are cross sections of extended m-dimensional cyclic codes. 

V. THE UNIFIED THEORY 

In this section, we introduce the term special position to 
describe a certain property of an algebraic curve. For an 
algebraic curve in special position, certain calculations of 
algebraic-geometric quantities are greatly simplified, and as 
we shall see in subsequent sections, certain techniques for the 
decoding problem associated with an algebraic-geometric code 
are possible only when the curve is in special position. Next, 
we give a construction by which any algebraic curve may 
be put into special position through an appropriate change 
of coordinates. The change of coordinates does not change 
any of the algebraic-geometric properties of the code, and in 
particular, algebraic-geometric codes derived from the curve 
are not altered in any way. 

Suppose X, is a smooth affine curve in m-dimensional 
affine space, and let X be the projective closure of X,. Let 
Q be a rational point of X, and let P = {PI, . . , P,} be a 
set consisting of other rational points of X, and let D be the 
divisor D = PI + . . + P,. In the code Co (D, a&), Q has 
the interpretation as a “point at infinity,” since we consider 
functions in the space L(aQ) which blow up only at Q. On 
the other hand, the projective space P” is regarded as the 
extension of affine space U=r by a “hyperplane at infinity” 
~0 = 0. We  examine the special case that arises when these 
two concepts of infinity coincide: that is, when the chosen 
point Q is the only point (rational or otherwise) of X lying 
on the hyperplane at infinity. 

Although the affine curve X, is nonsingular, it is possible 
that the point Q is singular on the projective curve X. Every 
curve X has a nonsingular model which is a nonsingular 
projective curve X which is birationally isomorphic to the 
original curve. For details on birational isomorphisms and 
the existence of a  nonsingular model, see [4], [6]-[8]. The 
points of X are called the places of X, and a place Q is said 
to be centered at Q if Q is mapped to Q by the birational 
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isomorphism. At every point is centered at least one and at 
most finitely many places. At any nonsingular point of X, 
there is precisely one place centered at that point, and it is 
usual to identify the point and the place in this situation. 
A singular point of X is called a cusp if there is precisely 
one place centered there. We  will adopt the convention of 
also identifying a cuspidal singularity with its unique place. 
Divisors, defined earlier for nonsingular curves, are defined 
for arbitrary curves as sums of places with integer coefficients. 
We  shall assume that there is exactly one place centered at the 
point Q. This means that either Q is nonsingular, or Q is a 
cusp. In case Q is a cuspidal singularity, our convention of 
identifying Q and Q means that the space L(aQ) is defined 
as the space of rational functions 4 E F,(X) which have 
poles only at a  with pole order a or less. This allows us to 
define algebraic-geometric codes CL (D, uQ) and Co (D, a&) 
as usual. 

Dejinition 11: We  say that the projective curve X is in 
special position with respect to the point Q if 

1) 

2) 
3) 
4) 

5) 

The hyperplane at infinity, x0 = 0, intersects X in 
precisely one point, Q. 
The affine curve X, = X\Q is nonsingular. 
There is exactly one place centered at the point Q. 
For j = l,... , m, let oj be the order of the pole of the 
function xj at Q (recall that the function xj is written as 
x~j/zu in projective coordinates). Then the oj are distinct 
and ordered: 0 < 01 < 02 < .. . < 0,. 
The oj generate the nongaps of Q as a semigroup: each 
nongap a may be written as 

a = crj0.j 

using nonnegative integer coefficients rj. 
Kamiya and Miura, in [23], characterized planar curves 

(curves in P2) which are in special position. 
Theorem 12: Suppose the projective curve X is in special 

position with respect to the point Q. Then the algebraic- 
geometric code Ca(D, a&) is a cross section of an extended 
m-dimensional cyclic code 

WD, a&) = Cl(P, C(K)) 

where D = PI + . . + P, and P = {PI, . . . , P,}. 
Proof The two codes are defined on the same set of 

points, so we only need to show that the two spaces of 
functions are the same: that is, we must show that L(aQ) = 
L(Ma). Recall that each of the coordinate functions xi has 
a pole at Q of order oi, and so a monomial function Z’ 
has a pole at Q of order Coiri. Thus the pole order of a  
monomial function is given by a weighted degree function, 
which we may use to define a monomial order. Let s0 denote 
the weighted-degree monomial order which orders a monomial 
x’ first according to its order Coiri and then lexicographically 
with x1 < ... < x,. Clearly, the set of monomial functions 

L(Ma) = {xr: Coir; 5  u} 

is a  subset of L(aQ), so the proof follows from the following 
proposition. 

Proposition 13: Let X be a projective curve in special 
position with respect to the point Q. Let 4(z) be a rational 
function in the space L(uQ). Then there exists a polynomial 
f(z) which is equivalent to $( x as a rational function on the ) 
curve X, and which is the sum of terms x’ of order 5 a. 

Proof: Proof is by induction on a. If a  = 0, then 4(x) 
is a  function with no poles on the projective curve X, which 
can only be a constant function. Therefore 4(x) is equivalent 
to a constant polynomial which is a term of order 0. 

Now suppose the proposition is true for all functions in the 
space L((a-l)Q). Let 4(x) be a function in the space L(aQ). 
We  may assume that the pole order of the function 4(x) at the 
point Q is exactly a, for otherwise 4(x) E L((u - 1)s. The 
pole order a is a nongap of Q, and since X is in special 
position, this means that a  can be expressed as 

a = cog-; 

for some integers rr, . . . , T,. Therefore, the monomial func- 
tion x’ is another function in the space L(uQ) which has pole 
order a at Q. Since 

dimL(uQ) = I+ dimL((a - l)Q) 

and 

xr E L(uQ)\L((u - 1)Q) 

it follows that 4(x) can be expressed as 

d+) = PxT + lli(x) (3) 

for some nonzero /3 E IF,, and some $ E L( (a - 1)s). 
Equation (3) is meant to be interpreted as an equality of 
rational functions, but the inductive assumption allows us to 
represent r/~(x) as a polynomial which is the sum of terms 
of order a - 1  or less. Thus (3) is actually an equality 
of polynomial functions in the coordinate ring [F, [X,], and 
moreover, it expresses $( x as a polynomial which is the sum ) 
of terms of order a or less, which concludes the inductive 
proof. n 

Proposition 14: Let X be a projective curve that is in 
special position with respect to the point Q. The order of any 
polynomial function f on X, may be calculated as follows. 
Let f be the normal form of f with respect to the ideal l(Xa) 
and the order sO. Then the order of f is the order of the 
leading monomial of 7. 

Proof: Suppose that there are two monomials xr and 
x5 of the same order a, both of which are standard for the 
ideal T(Xa) with respect to the order IO. We  may suppose 
that s L0 T. There exists some nonzero ,0 E F, such that 
the polynomial g(x) = x’ - /3x” has order a - 1  or less. 
Applying Proposition 13, it follows that g(x) is equivalent to 
a polynomial h(x) which is the sum of terms of order a - 1  
or less. Define 

f(x) = XT - /3x* - h(x). (4) 

Then f(x) = OmodI(X,), or in other words, f(x) E I(Xa). 
Since f is a  member of the ideal 1(X,), and its leading 
monomial is x’, it follows that xr is a  nonstandard monomial, 
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giving a contradiction. Thus we have proved that there is at 
most one standard monomial of any order. 

Now assume that f(x) is a  polynomial, and let f(z) be 
its normal form (with respect to the ideal 1(X,) and the 
monomial order so). Then f is the sum of terms of distinct 
orders, and so the order off is the order of its leading term. 

n 
Example 3: Let X be the Hermitian curve given, in affine 

coordinates, by the equation xr+l - y’ - y = 0 over [F,, where 
q = r2. This curve is nonsingular and in special position. 
The unique point on the hyperplane z = 0 at infinity is the 
point Q = (0: 0: l), expressed in projective coordinates as 
(2: x: y). The coordinate functions X/Z and Y/Z have orders 
01 = T  and 02 = T  + 1. The Hermitian curve has r3 + 1 
rational points, so we may choose the divisor D to be the 
formal sum of the r3 rational points other than Q, and form 
an algebraic-geometric code Co(L), a&). 

Because the Hermitian curve is in a special position, it has 
many nice properties, which explains why it is so widely used 
as an example in the literature of algebraic-geometric codes. 
The technique outlined in this paper of putting curves into 
special position can be seen as a means of making every 
algebraic-geometric code behave in a similarly nice fashion. 

Theorem 12 allows us to relate algebraic-geometric codes 
with extended m-dimensional cyclic codes and their duals, as 
shown in the following diagram: 

Thus codes of the form CL(D, a&) are obtained through 
puncturing (indicated in the diagram by “pun?), and codes of 
the form Co(D, aQ) are obtained through the dual operation 
of taking a cross section (indicated in the diagram by “c-s”). 

Next, we will show that starting from an arbitrary projective 
curve X and an arbitrary place Q on X, there is a change of 
coordinates which puts X in special position with respect to Q. 
We  seek a projective curve X’ which is in special position, and 
a birational isomorphism X ---) X’. Let X be a nonsingular 
model of X. (Computation of x is investigated in [24].) There 
is a birational isomorphism X + X, and thus it suffices to find 
a birational isomorphism x + X’. Hence, we may assume 
without loss of generality that X is nonsingular. 

Given a set of nongaps (01,. . . , om}, 0  < 01 < 02 < . . < 
om, which generates the semigroup N(Q) of all nongaps, 
choose rational functions & E L(o;Q) such that the pole order 
of & at Q is exactly oi. We  do not assume that the oi are a 
minimal generating set. A standard construction in algebraic 
geometry is the mapping from X\(Q) to ‘F3 given by 

(This is the mapping associated with the linear system asso- 
ciated with the &.) Let XL be the image of X under this 
map, and let X’ c pm be the projective closure of XA. Porter 
[9] investigated the use of this mapping to put an algebraic 
curve in special position, and his results are summarized and 
extended in the following theorem. 

Theorem 15: The map P H (41 (P), . . , &(P)) extends 
to a birational isomorphism of X and X’. The projective curve 
X’ is in special position with respect to the point Q’ E X’ 
which is the image of Q under the extended map X + X’. 
The algebraic-geometric codes defined from X and X’ are 
identical when a point P E X is identified with its image 
P’ E X’. In particular 

Cd% aQ’) = CL(D, a&) 

Cn(D’, a&‘) = Cn(D, a&). 

Proof: See Appendix I. n 
Corollary 16: Let X be any projective curve, and let Q be 

a place of X. Then the code Co (D, aQ) is a cross section of 
an extended multidimensional cyclic code. 

Note that in the map X -+ X’, the curve X’ is embedded 
in m-dimensional projective space, where m  may be different 
from the dimension of the space in which the original curve X 
is embedded. In fact, m  is equal to the number of semigroup 
generators for N(Q). 

If {Oi,... , 09+1} is the complete set of nongaps 5 2g + 1, 
then the set {#II, . . . , $,+I} actually forms a basis for L((2g+ 
1)s). Then X’ is the image of a  complete linear system, and 
by a well-known result in algebraic geometry, this implies 
that X’ is nonsingular. This shows that X’ may always be 
embedded as a nonsingular curve in lPg+l which is in special 
position. However, to minimize the dimension m  of the space 
$“, we should not insist that X’ be nonsingular, as long as 
it is in special position. 

In order to represent XL in the usual way as an affine 
curve, we would like to find a set of polynomials F  in m  
variables whose solution set is the curve XL = V(F). From 
the proof of Theorem 15, XL = V(I), where I is the ideal 
consisting of all polynomials f(y) E F, [yi, . . , ym], such that 
S(41,. ‘. > 4m) E Km is equivalent to zero as a rational 
function on X. In other words, we want to find the ideal I 
of all polynomial relations satisfied by the rational functions 
&, . . . , &. Computation of a  generating set for the ideal 1  
may be accomplished using a modified version of the Rational 
Implicitization algorithm described in [2, pp. 131-1321. 

Example 4 (The Klein Quartic): (Portions of this example 
are due to [9].) The Klein Quartic is a  curve X defined in the 
projective plane by the equation 

xix1 + xfx2 + xix, = 0. 

We consider this curve over the field IF a. We  choose the 
point Q = (0: 0: l), and proceed to calculate the gaps of 
Q and functions corresponding to the nongaps. This curve has 
genus g = 3, and the three gaps of Q are { 1, 2, 4). The 
semigroup N(Q) is generated by 3, 5, and 7. Therefore, we 
seek functions 41, 42, &, E L( 7Q) whose pole orders are 3, 
5, and 7, respectively. We  may take 

&(x0: x1: x2) = 2 

xix2 42(x0: x1: 4  = - 
4  
4 

43(X& x1: x2) = 2. 
x0x1 
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Thus we make a change of coordinates from (~0: xl: ~2) 
to (ya: yi : yz: ys) which maps the curve into projective 
3-space. The ideal of the curve X’ is the collection of 
all polynomial relations satisfied by the functions &. The 
equations of the curve XL are given by a generating set 
(91, 92, a, a} for this ideal 

91(Yl, Y2, Y3) =  YlY3 +  Y/22 +  Yl 

g2(Yl> Y2, Y3) = Y2Y3 + Y;’ 

i73(Yl, Y2, Y3) =  Y: +  YfY2 +  y3 

g4(y1, Y2, Y3) = Y23 + Y: + YlY2. 

(These four polynomials form a Grijbner basis for 1(X’) 
with respect to the monomial order 50 induced by the pole 
orders (01, 02, 03) = (3, 5, 7).) The unique point on X’ in 
projective coordinates (yu: ~1: yz: ya) which intersects the 
hyperplane ya = 0 is the point Q’ = (0: 0: 0: 1). In the 
new coordinates, we may write any rational function in the 
space L( a&) as a polynomial in yr , yz, and ys. Once we have 
computed the new coordinates (yi , yz, ys) of all of the points 
P,!, we no longer need the functions 41, 42, and 43. 

In this example, the point Q’ is a cuspidal singularity, but 
this does not prevent us from defining algebraic-geometric 
codes. However, if it is preferable to have a nonsingular curve 
X”, then, according to the comments following Theorem 15, 
we can embed the curve in p4 by choosing (0’1, 0’2, 05, ok) = 
(3, 5, 6, 7) to be the complete list of nongaps 5 2g + 1. 
Then we may set f$\ = $1, f$‘, = f$~~, 4; = $2, $i = $3. 
The equations defining X” will then be {gi , gh, gi, gi, gi}, 
where gl(m, YZ, ~3, ~4) =  s&l, ~2, ~41, for i =  1, 2, 3, 4 
and c&h, ~2, ~3, ~4) = ~3 + Y?. 

VI. THE GENERALIZED TRANSFORM 

In this section, we define a transform which is useful in 
studying a code C which is a cross section of an extended 
m-dimensional cyclic code C = Cl(P, L(M)). When P = 
([Fz)m, C is a multidimensional cyclic code, and in this 
situation, the transform is the usual m-dimensional discrete 
Fourier transform. Thus the transform we present here can be 
viewed as a generalization of the discrete Fourier transform. 

Dejinition 17: Assume that P C IF y. The transform on 
FQ) p is the map which takes a word w E (Fq)p to an 
(infinite) m-dimensional array W  E (IF,)(zy) defined by 

ws = ~VPPS”O, s E “1;“. 
PEP 

Note that the transform is defined for a  collection P of 
points in affine, not projective, space. Associated with the finite 
set of points P, there is the ideal I(P) in the polynomial ring 
E,[xl =  ~q[w-, xGm] consisting of polynomials which van- 
ish at these points. Since P consists of points with coordinates 
in IF,, the polynomial x4 - xj will also be a member of the 
ideal I(P) for j = l,..., m. In case P is a set of rational 
points on a curve X, the polynomials which define the curve 

X will also be members of the ideal I(P). Let 5~ be a fixed 
monomial order. Define Ap = Al,(I(P)) to be the set of 
integer vectors s such that xs is a standard monomial with 
respect to I(P). 

Dejinition 18: The proper transform is a map from (IF,)p 
to (IFq)Ap, which takes a word w E (IFq)p to the finite 
“subarray” W ] A, of its full transform W . 

Now we state an important result which says that the delta 
set of an ideal counts the points of the ideal’s zero set. 

Theorem 19: Let I = I(P) be the ideal of a  finite set of 
points P c lFF. Then the following quantities are equal: 

1) The dimension of IF, [xl/1 as a vector space over IF,. 
2) The number of standard monomials la<,(T)] with re- 

spect to any monomial order 5~. 
3) The number of points IPI. 

Proof The fact that every polynomial f E IF,[z] has a 
unique normal form shows that the standard monomials form 
a basis for lFq[x]/I. Another basis for IF,[x]/1 is obtained 
by considering a set of polynomials { fp(x): P E P} with 
the property that fp( P) = 1, and fp (Q) = 0 for each 
Q E P\{ P}. Clearly, each fp is in a distinct coset of IFq[x]/I 
and if g(x) is any polynomial, then 

g(x) = c g(P)fdx) modI. n 
PEP 

Theorem 20: The transform w H W  is a one-to-one linear 
map from (F,)p to (I=,)“? and the proper transform w H 
W I*, is one-to-one and is a surjection onto the space (F,)*P 
(i.e., invertible on (IF,)*?). 

Proofi The linearity of the transforms follows directly 
from the definitions. First we prove that the proper transform is 
one-to-one. Let ru be a word whose proper transform W(A, is 
identically zero. Let P be any point in P. Choose a polynomial 
A(z) E IF,[x] which vanishes at every point of P except 
P. Now, reduce A(z) to its normal form x(x) which is a 
polynomial made up of monomials x’ for T  E Ap, and we 
have the following equality: 

0 =  hAF &WV = %&~QEP W Q ”~(Q) 

= CQEP WQ~(Q) = wpA(P). 

Since P was arbitrary, we may conclude that w = 0. Since 
the proper transform is a linear map, this shows that it is one- 
to-one. Thus the full transform is also one-to-one, since the 
proper transform is a subarray of the full transform. 

By Theorem 19, the cardinality of Ap is the same as the 
cardinality of P. Thus the proper transform is a linear map 
between vector spaces of the same finite dimension. Since the 
proper transform is one-to-one, the dimension of the image of 
(IFq)p under the transform is IP(, which shows that the proper 
transform is a surjection. 

Example 5: Let P = (IFG)m. Then a Grijbner basis (wit: 
respect to any monomial order) for -T(P) is given by { xy-’ - 1, 
. . . ,zg’-l}.ThenAp={ s: sj 2  q-2 for all j}, andthe 
proper transform w H W in, can be evaluated by interpreting 
w as a polynomial w(x) and evaluating: W , = w(o?). This 
is the m-dimensional discrete Fourier transform. (See [25] for 
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details of the one- and two-dimensional versions of the discrete The entries E;.j of the two-dimensional syndrome array asso- 
Fourier transform.) ciated with this error are 

Example 6: Consider the Hermitian curve X, c F& de- 
fined by x5 - y4 - y = 0 over IFrs. Let Q be the unique 
point on X at infinity, and let P be the set consisting of the 
other 64 rational points. Let s0 be the weighted-degree orders 
which orders a monomial ziyj first according to its weighted 
degree 4i + 5j, and orders monomials with the same weighted 
degree according to the exponent j. One can check that a  
Griibner basis for I(P) with respect to the weighted-degree 
order i0 is given by {y4 - x5 + y, xl6 - x}. The set of 
standard monomials is given by the set 

0  1 2 3 4 5 6 ... 

0  0 a6 1 0 o!s * * . . . 
1  a12 &‘3 a4 a(5 * z+c . . . 

2 1 crT 1 Q2 * * ..’ 
i 3  a ,a a5 * * . . . (5) 

4  0 1 * * * ... 

Ap = {(i, j): 0  5 i < 16, 0 5 j < 4) 

and the proper transform w H W I*, is a  isomorphism of 
64-dimensional vector spaces over IF16. 

5 2 * * * ; 
6  **.. 

. . . . . . 

The syndromes Eij are known only for 4i + 5j 2  23, and 
unknown syndromes are indicated by the symbol *. 

Dejinition 21: Let 
VII. THE ERROR LOCATOR IDEAL f(x) = Cfsx” E F[Xl, . . . )X,1 

In the decoding problem, we assume that a codeword 
c in a cross section of an extended m-dimensional cyclic 
code Cl(P, L(M)) is transmitted over a noisy channel and 
corrupted by an error word e E (ff4)p, so that the word 
w = c + e is received by the decoder. The decoder seeks to 
determine the error word e, and at least conceptually, this task 
may be accomplished by first determining the error locutions 
and then the error values. The error locations, or support of 
the word e E (IFq)p is defined as the set supp (e) = {P E 
P: ep # 0). In this section, we relate the set of error locations 
with an ideal which describes the linear recursion relations 
satisfied by the syndrome array. 

Another, equivalent, way of posing the decoding problem is 
to determine the transform E of the error word. By definition 
of the code Cl(P, L(M)), whenever s E M, the correspond- 
ing entry C, of the transform C of the codeword c vanishes: 
C, = 0. Therefore, for s E M, the entry ES of the transform 
of the error word may be obtained directly by computing the 
entry W , = ES of the transform W  of the received word 
w = c + e. The entries E,, s E M, are thus the syndromes 
of the error word. The values of the remaining entries of the 
array E are initially unknown to the decoder, and although 
these unknown entries are not syndromes in the usual sense, 
we shall refer to them also as syndromes, and refer to E as 
the syndrome array. 

Example 7: Consider again the Hermitian curve over ff ia as 
in Example 6. Consider the (64, 46, 13) algebraic-geometric 
code Co(D, 23Q) = C(P, C(Mzs)). Let a  be a primitive 
element of IFi6 satisfying the equation Q4 $ a + I = 0. Let e  
be an error word of Hamming weight 6 

be a polynomial in m  variables. The m-dimensional array E 
is said to satisfy the m-dimensional linear recursion relation 
with characteristic polynomial f(x) if 

cf,E,,, = 0, for all r > 0. (6) 
8  

(Note that r, s E Z?,? are vectors of nonnegative integers, 
and that the sum is finite since the polynomial f(x) has only 
finitely many nonzero coefficients fS). The m-dimensional 
linear recursion relation represented by the polynomial f(x) 
is said to be valid for the m-dimensional array E if (6) holds. 

Definition 22: The set of characteristic polynomials of all 
valid m-dimensional linear recursion relations for the syn- 
drome array E is called the error locator ideal, and is denoted 
by VW 

Theorem 23: The syndrome array E satisfies the m- 
dimensional linear recursion relation with characteristic 
polynomial f(x) if and only if f(P) = 0 for all error locations 
P E supp (e). In other words, V(E) = I(supp (e)). 

Proof First note the following identity for any r E ZT: 

~fsEs+r = cfs c epx8+r(P) 
8 

= B ftpepx’(P)Cf.x~(P) 
PEsuPP (e) 

= C  epf(P)xT;P) 

PESUPP (e) 

(7) 

ql,d) = a: 
11 

e(,z, cy~2) = al4 

e(,3, a2) = a2 

e(,ll, a3) = a 

e(,12, -4) = (Y 
14 

e(,14, a~~) = a3 

ep = 0, otherwise. 

The identity (7) shows that if f(P) = 0 for P E supp (e), 
then f(z) is the characteristic polynomial of an m-dimensional 
linear recursion relation satisfied by the syndrome array E. 

To prove the converse, assume that the m-dimensional linear 
recursion relation defined by f(x) is a  valid relation for E. 
Define the word a by ap = epf(P). Then identity (7) implies 
that 

C UPS(P) = 0, 
PEP 

for all 9- E ZT  
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or in other words, the transform A of a  is identically zero. 
From this it follows that the word a is identically zero, and 
so for each error location P E supp (e), we have ep # 0, and 
therefore f(P) = 0. n 

It is interesting to note that since all words are supported 
on the set P, the polynomials in the ideal I(P) give m- 
dimensional linear recursion relations which are automatically 
satisfied by any transform array. In other words, I(P) c 
I(supp(e)) = V(E). I n  order for the decoder to take this 
information into account, a  Grobner basis F  for the ideal I(P) 
should be available. Using the m-dimensional linear recursion 
relations determined by the polynomials in the set F, the 
(redundant) entries of any transform array may be computed 
from the entries of the proper transform. We  also emphasize 
that in the case of an algebraic-geometric code defined over a 
curve X, the equations of the curve determine the ideal I(X) 
which is also a subset of V(E), but the ideal of the points 
W) 1 I(X) g’ Ives slightly more refined information about 
what is known about the syndrome array. 

VIII. SAKATA'S ALGORITHM 

As a consequence of Theorem 23, the error locations 
supp (e) may be determined from the set of m-dimensional 
linear recursion relations valid on the transform E of the 
error. Although the decoder does not know the full array E, 
it does know a large enough portion of the array to determine 
some valid recursion relations. This idea is a generalization of 
the Berlekamp-Massey algorithm [26], [27] which determines 
the error locations for a  Reed-Solomon code by computing a 
minimal recursion relation (or shift register) which is satisfied 
by the syndromes. 

Sakata [28], [29] developed an algorithm for determining the 
set of linear recursion relations satisfied by a multidimensional 
array. Sakata’s algorithm forms a framework for a  decoding 
algorithm, but we must also make some extensions to the orig- 
inal algorithm since we are ultimately interested in relations 
satisfied by the infinite array E, and also because we want to 
take into account the additional information that the members 
of the ideal I(P) give relations which are automatically valid 
for the array. 

Choose a monomial order 5~ on the monomials in m  
variables. Associated with the error locator ideal V(E) is 
the delta set Al,(V(E)). A minimal Griibner basis Y= for 
the ideal V(E) consists of characteristic polynomials of m- 
dimensional linear recursion relations that are satisfied by the 
m-dimensional array E and have minimal leading monomials. 
Thus F  is a minimal polynomial set, in the terminology of 
Sakata, for the array E. 

According to Definition 21, an m-dimensional linear recur- 
sion relation represented by a polynomial f(z) E F[z] is valid 
for the m-dimensional array E if .the equation 

Ff.JG+s = 0 

holds for all r > 0, but now we shall consider the case in 
which the equation 

W&s, = 0 

is satisfied on some subarray of E. We  regard the entries of 
the m-dimensional array E as being ordered according to the 
order 5~. Then we may rewrite (6) to express the largest entry 
of E (this is the entry E,, where u = r + lead (f)) as a linear 
combination of the previous entries Ep, p <T ‘(I 

-1 
E,, = IC(~)~<~= c-f lead (.f)--u+pEp’ (8) 

Definition 24: The m-dimensional linear recursion relation 
represented by the polynomial f(x) is said to be invalidfor the 
m-dimensional array E at entry E, if u  2 lead (f) (compared 
according to the divisibility order) and 

E, # &pghead Cf--u+PEp 

Otherwise, the m-dimensional linear recursion relation rep- 
resented by the polynomial f(x) is said to be vaZid for the 
m-dimensional array E at entry E,,. 

Note that this definition leads to the convention that when- 
ever p1 # lead (f), the m-dimensional linear recursion relation 
represented by the polynomial f(z) is automatically valid 
at entry E,. This is because when u # lead (f), it is not 
possible to relate the elements Ep for p <T ‘(I according to 
the m-dimensional linear recursion relation represented by 
the polynomial f(z). However, when 21 >_ lead (f), it is 
required that (8) holds for the m-dimensional linear recursion 
relation represented by the polynomial f(z) to be valid at 
entry E,,. It should be stressed that in the rearrangement of 
(6) as (8), we isolate the entry E, which is greatest according 
to the particular monomial order IT which has been chosen. 
Therefore, the notion that a  m-dimensional linear recursion 
relation is valid or invalid at a  particular entry E,, depends 
implicitly on the choice of monomial order. 

DeJinition 25: We  say that the m-dimensional linear recur- 
sion relation represented by the polynomial f(s) is valid for 
the m-dimensional array E up to entry E,, if it is valid at 
each entry E,., for all r ST u. The collection of characteristic 
polynomials of all m-dimensional linear recursion relations 
valid for the m-dimensional array E up to entry E,, is denoted 
by K(E). 

Rewriting (8), we see that a  polynomial f(z) is in the set 
V,(E) if and only if 

for all r E Zy such that r + lead (f) ST ‘IL. (9) 

Note that validity of an m-dimensional linear recursion rela- 
tion at an entry E,, or validity for all entries up to entry E,, 
depends only on the entries E,. of the m-dimensional array E 
up to entry E,,: the entries Ep, for ti <T p can be changed 
arbitrarily without affecting the validity of an m-dimensional 
linear recursion relation up to entry E,,. 

The set V,(E) fails to be an ideal because it is not closed 
under addition. On the other hand, the set V,(E) is closed 
under monomial multiplication: 
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Theorem 26: Suppose f(x) E V,(E), and let g(x) = 
xPf(x). Then g(x) E V,(E). 

Note that any relation valid on the entire array is valid on a 
subarray, so V(E) C_ V,(E) for any U. Furthermore, if T  <T s, 
then any relation valid up to entry s is also valid up to entry 
r, and so V,(E) C V,(E). Letting ‘II+ denote the successor to 
u in the monomial order <T, we have 

0 
E,[xl Y 

<T 

& 3  

u+ <T 

K+(E) 2  VT% 
0 C W,.(E)) t A(K+(E)) c: W(E)). 

In other words, as u increases according to the monomial order 
<T, the delta set A(V%(E)) increases in size, starting from the 
empty set, until its final value A(V(E)). The size of this delta 
set measures the number of errors which have occurred. 

Theorem 27: Assume that {E,: T  E ZT;“} is the syndrome 
array for an error pattern e. Then the size of the delta set 
A( V( E)) is equal to the number of errors which have occurred 

lA(VW>I = IMI~ 
(this is the Hamming weight of the word e) and 

lwxE))I 5 Il4HT for all u  E Zl;. 

Proof: By the Error Location Theorem (Theorem 23), 
the error locator ideal V(E) is the ideal V(E) = 1(supp (e)) 
corresponding to the set supp (e)) of points. Each of these 
points P E supp (e) identifies a distinct error location, and 
hence the number of points, is equal to the number of errors 
which have occurred: (supp (e)I = ]]el]H. But in Theorem 19, 
it was shown that the size of the delta set associated with 
an ideal of the form 1(supp (e)) equals the cardinality of the 
point set supp (e), and so ]A(V(E))I = JJeJJH. For all u  E “7, 
APL(E)) 5 A(V(E)) ad thus lA(K(E))I I IlellH. 

The definition of a  minimal polynomial set for the set Vu(E) 
is the same as the definition of a  Grobner basis (Definition 4), 
the only difference being that the set V,(E) is not an ideal. 

Dejinition 28: Let A(I&(E)) be the delta set associated 
with the set V,(E). A set F  c Vu(E) is called a minima2 
polynomial set for V,(E) if A(F) = A(I&(E)). 

The delta set A(VU(E)) consists of the monomials which 
do not occur as the leading term of any polynomial in the set 
V,(E). For this reason, Sakata called A(VU(E)) the excluded 
point set. 

The output of Sakata’s algorithm is a minimal polynomial 
set F’, consisting of the characteristic polynomials of m- 
dimensional linear recursion relations which are valid for the 
array E up to some specified entry E,,. The validity of the 
polynomials in the set J= can be checked by applying (9), 
but the minimality of their leading monomials is not self- 
evident. Therefore, it will be necessary to provide additional 
information, in the form of another set D of polynomials, 
called a witness set, which will serve to verify that the leading 
monomials of the polynomials in the set F  are indeed minimal. 

Dejinition 29: Let f(x) be the characteristic polynomial of 
an m-dimensional linear recursion relation which is valid for 
all entries E, up to, but not necessarily including entry E,,. 
Define the predicted value for the entry E, associated with 

f(x) 

(lo) 

The value Pu( f) predicted for the entry E,, by a polynomial 
f(x) is just the right-hand side of (8), and therefore the 
m-dimensional linear recursion relation represented by the 
polynomial f ( ) x IS valid at entry E,, of the m-dimensional 
array E if and only if the actual value of entry E, is equal 
to the predicted value P,,( f ). 

Theorem 30 (Agreement Theorem): Suppose that the m- 
dimensional linear recursion relations represented by the 
polynomials f(x) and g( x are valid for the m-dimensional ) 
array E at all entries Eq preceding entry E,, (that is, for 
4  <T u), and suppose u > lead (f) + lead (g). Then the 
polynomials f(x) and g( x a ree in their prediction for the ) g  
value of the array entry E,, 

PU(f 1  = P&l). 
Proof See Appendix II. n 

Dejinition 31: Let g(x) be the characteristic polynomial of 
an m-dimensional linear recursion relation which is valid for 
the m-dimensional array E at all entries preceding the entry 
E,, but which is invalid at entry E,,. The span of g(x) is 
the vector 

Span (g) = u - lead (g) 

and the discrepancy of g(x) is the quantity 

6, = lc (g)[Eu - P,(g)] = xgsE;B++n (g) # 0. 
8  

Theorem 32, first proved by Sakata in his original paper [28], 
is the m-dimensional generalization of a  theorem originally 
proved by Massey [27]. 

Theorem 32: Suppose g $ V,(E). Then Span (g) E 
AW(E)). 

Proof See Appendix II. n 
Example 8: Consider again the syndrome array in Example 

7. Let 

g(z, y) = xy + cPx2 + d3TJ + CPII: + cv6. 

Then the two-dimensional linear recursion relation 

Ei,j = a11E;+l,j-l+~13Ei-l,j+a11E,,j-1+a6E,-l,j-l 

associated with the polynomial g(s, y) is valid for all syn- 
dromes prior to entry (2,2), but is invalid at entry (1;, j) = 
(2, 2). In other words, the recursion relation is valid for 
(i, j) = (2, I), (1, 2), (3, 1) (all (i, J’) satisfying lead(g) = 
(1, 1) < (i, J’) <T (2, a)), but is invalid for (i, j) = (2, 2). 
Thus Span(g) = (2, 2) - (1, 1) = (1, I), and so Theorem 
32 implies that (1, 1) E A(Va, z(E)); there is no polynomial 
with lead term xy which defines a recursion relation which is 
valid up to entry (2; 2). 

Definition 33: Let g(x) E F[x]\V(E). Then the polyno- 
mial g(x) is called a witness for the point Span (g). 

The idea behind Definition 33 is that the polynomial g(x) 
verifies, through Theorem 32, the fact that Span (g) is a  
member of the delta set A( V(E)). 
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Dejinition 34: Let B C F[x]\V(E) be a set of polynomials. 
The set &2 is called a witness set for the delta set A if CI 
contains a witness for each interior comer of the delta set A. 
We write A = Span (G). If &7 is a witness set for the delta set 
A, then we know immediately that the interior corners of A 
are members of the set A(V(E)). Since A(V(E)) is a delta 
set, this implies that A C. A(V(E)). 

The following theorem shows how a set 3 can be verified 
to be a minimal polynomial set, given an appropriate witness 
set 4. The idea is that the witness set B determines certain 
points which must be inside the delta set A(VU(E)), and the 
polynomial set 3 determines points which must be outside 
A(VU(E)), and when the two boundaries match, the delta set 
is known exactly. 

Theorem 35: Suppose 3 C V,(E) and suppose that 6 C 

F[z]\V,(E) is a witness set for the delta set A(3). Then 
A(3) = A( Vu( E)), which implies that 3 is a minimal 
polynomial set for V,(E). 

Proof: Because G  is a witness set for A(3), we have 
A(3) s A(VU(E)). On the other hand, 3 is a subset of 
V,(E), and so it follows that A(&(E)) g A(3). 

Theorem 36: Suppose 3 c V(E) and suppose that $2 c 

F[x]\V(E) is a witness set for the delta set A(3). Then 
A(3) = A(V(E)), which implies that 3 is a Grobner basis 
for the ideal V(E). 

Proof The proof is the same as the proof of Theorem 35. 
The basic data used by Sakata’s algorithm is a pair of sets 

3 and 8, where 3 is a minimal polynomial set, and B is a 
witness set. A single iteration in Sakata’s algorithm takes a 
minimal polynomial set 3 for the set V,(E) and a witness 
set 6 for the delta set A(VU(E)) and produces a minimal 
polynomial set 3+ for the set Vu+ (E) and a witness set Q+ 
for the delta set A(l&(E)). Note that the output is just an 
updated version of the input, so the algorithm in Fig. 1 can be 
iterated. In fact, in Fig. 1 we have actually extracted the inner 
loop of the algorithm originally presented by Sakata. 

Sakata’s algorithm (Fig. l> breaks down into three stages. 
In the first stage (lines l-4), the polynomials in the set 3, 
which are known to give valid m-dimensional linear recursion 
relations for all entries of the array up to entry E,, are tested 
for validity at the next entry E,,+ . Any polynomial which fails 
to be valid for the next entry E,,+ may be used as a witness, 
and these new witnesses are collected in the set ni. 

In the second stage (lines 5-8 of Fig. l), the excluded point 
set A = A(VU(E)) is updated using the new witnesses from 
the set N. The updated delta set A+ consists of the original 
delta set A of excluded points witnessed by the polynomials 
in the set 6, along with any new excluded points which have 
been discovered by the new witnesses. It should be noted that 
it frequently occurs that one or more of the new witnesses 
f(z) E n/ is a witness to a excluded point Span (f) which 
is already in the delta set A. Furthermore, the operation of 
appending a new excluded point T to the delta set A must 
take into account that all points’s 5 T must be appended to 
the delta set as well, so that the updated set A+ is also a 
delta set. 

By the end of the second stage, an updated witness set 9+ 
has been constructed which is a witness set for the updated 

Input: 

E> an m-D array, 

U, an index u E ZT, 

3, a minimal polynomial set 

6, a witness set for Vu(E) 

output: 

3+, a minimal polynomial set 

4+, a witness set for V,+(E) 

I Let 3’ = { f E 3 : lead(f) 5 u+ } 
e for each f E 3’, & 

n 
3 Compute he(f) =& c &ad(f)-U++p q 

p<TU+ 
4 Lethl={fEF’ : P,+(f)#Eu+} 
5 LetB+ =GUAf 

6 Let A+ = Span(@) 

7 for each f EN, & 
8 Compute 6f = k(f) [EU+ - &+(f)] 
9 foreach sEExtA’,& 

for h(E), 

for VU+(E), 

10 

ii 

12 

13 

14 
15 

16 

17 

18 

19 

20 

21 

2.2 

23 

a4 
25 

26 

27 

28 

beJi& 
$ there exists f E 3 \ N with lead(f) = s, 
then 

Let h(‘)(x) = f(x) 
&fsgu+, 

then 

m 

Find f E N with lead(f) 5 s 
Let h(S)(x) = ~~-‘~~~(-f)f(x) 

end 

& 
beJiJ 

Find f E N with lead(f) 5 s, 
Find g E 6 with Span(g) 2 u+ - s, 
Let q = s - lead(f) 
Let p = Span(g) - u+ + s 

Let /Z(~)(X) = xqf(x)- 

2s Let F+ = { hcS)(x) : s E Ext At } 

Fig. 1. Sakata’s algorithm. 

delta set A+. The third stage (lines 9-29 of Fig. 1) consists of 
computing an updated set 3’+ of polynomials which are valid 
for the m-dimensional array up to entry E,,+ : 3+ c Vu+ (E), 
and for which A(3+) = A+. Once this is done, it follows 
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14 
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19 
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24 
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25 
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0 . . . . 

26 1 . . . . 

27 
28 

If& fill 2 . . . . 

28 3 . . . . 
29 
29 

: 
4 . . . . 

TABLE I TABLE II 
OUTPUT OF SAKATA’S AGORITHM POLYNOMIALS USED IN THE OUTPUT OF SAKATAT ALGORITHM 

from Theorem 35 that .P is a minimal polynomial set for 
V,+ (E), and that @  is a witness set for A( Vu+ (E)). 

In order to satisfy the condition A(?=+) = A+, polynomi- 
als h(‘)(z) are computed whose leading monomials are the 
exterior comers s of the delta set A+. Therefore, in order to 
prove the correctness of the algorithm, we need to prove the 
following lemma: 

Lemma 37: Each polynomial /L(~)(Z) computed in lines 
9-28 of Fig. 1 satisfies 

lead (h(“)) = s 

h(“)(x) E V,+(E). 

Proof See Appendix II. n 
Example 9: Table I lists the output of Sakata’s algorithm 

when it is applied to the syndrome array given in (5). Each 
row of Table 1 is labeled with a pair (i, j) corresponding to an 
entry Ei, j in the syndrome array.. The syndromes are ordered 
according to their weighted degree 4i + 5j, and when the 
weighted degrees are the same, they are ordered by the largest 
value of j. For each (i, j), Table I lists a minimal polynomial 
set F and a witness set B for the delta set A = A(K, j(E)). 
(In some cases, the same witness set B and delta set A applies 
to several rows of Table I.) The polynomials &(cc, y) referred 
to in Table I are listed in Table II. 

To illustrate, consider entry (3, 1) of Table I. The table 
indicates that the set J= = { fis, fi5, fin} is a minimal poly- 
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nomial set for the delta set A(&, l(E)). In other words, these 
three polynomials represent two-dimensional linear recursion 
relations which are valid for the syndrome array E for all 
entries up to ES, 1, and their leading terms, y2, zy, and 
zs, respectively, correspond to the exterior comers (0, 2), 
(1, l), and (3, 0) of the delta set A(V3,1(E)). A witness 
set for the delta set A(&; i(E)) is listed as 6 = { fs, fro}. 
Thus the polynomials fa(z, y) and fra(z, y) represent two- 
dimensional linear recursion relations which have failed to be 
valid at some entry of the syndrome array preceding Ea, 1, 
and they satisfy Span (fs) = (0, 1) and Span (fro) = (2, 0), 
corresponding to the interior comers (0, 1). and (2, 0) of the 
delta set A(Vs, 1(E)). 

The successor to u = (3, 1) in the monomial order I0 is 
U+ = (2, 2), and Sakata’s algorithm is applied to find FT+ and 
L?. Since lead(fia) = (3, 0) $ (2, 2), it is not possible to 
predict the value of E2, a using the two-dimensional linear 
recursion defined by the polynomial fra, and so this two- 
dimensional linear recursion relation is (by definition) valid 
for all entries up to (2, 2). The recursion relation defined by 
fra predicts that Ez, 2 = 1, and the recursion relation defined 
by fia predicts that E2; 2 = as. The true value of E2,2 is 1, 
and thus 

and 

Jv = Lf151, Gf = Lf5, f10, f151 

Span(fi5) = (2, 2) - (1, 1) = (1, 1) 

A+ = Au ((1, 1)). 

(Note that fis(z, y) is the same as the polynomial ~(z, y) 
considered in Example 8.) Since the polynomial fij is a 
witness for the point (1, I), the polynomial f5, which was 
a witness for the point (0, l), may be discarded from the set 
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lbegin 

e Initialize: u  = O,F= {l},G = 0 
3 Repeat  : 

4  3 syndrome EU is unknown, 

5 Compute Eu (SYNDROME EXTENSION) 

6 Run Sakata’s algorithm to obtain (F+, Gf) 
7 Update: 
8 F+FF+ 

9 6+6+ 

10 u +- u+, according to MONOMIAL ORDER 

11 fi TERMINATION CRITERIA are satisfied 

1.2 glJ 
Fig. 2. General decoding algorithm. 

G+. The exterior comers of A+ are (0, 2), (2, l), and (3, 0), 
and so we must find polynomials with leading terms y2, x2y, 
and x3, respectively, which give relations valid for all entries 
up to (2, 2). Since the polynomials fis and fis are valid up to 
(2, 2), we need only find a polynomial fi~(~, y) with leading 
term x2y. Using the computation described in line 26 of 
Fig. 1, we find 

fl7 = xf15(2, Y) + (&5/S5)f5(~, Y) 

= Zf15(Z, Yy> + a3f5c7b Y) 

= x2y + #x3 + a13xy + #x2 + a3y + Q4X + a7. 

Thus we have a minimal polynomial set F+ = {fis, fr7, fis} 
and a witness set G+ = {fis, fit} for the delta set 
A(Va,z(E)), as listed in Table I. 

IX. DECODING METHODS 

In the decoding problem for a cross section of an extended 
multidimensional cyclic code, we have seen that the error lo- 
cations correspond to the zeros of an error locator ideal V(E) 
and that Sakata’s algorithm may be used to determine V(E). 
However, the use of Sakata’s algorithm requires full knowl- 
edge of each syndrome, and in the decoding problem, some of 
the syndromes are unknown. Therefore, decoding algorithms 
which have been developed for multidimensional cyclic codes 
[19], [20] and algebraic-geometric codes [30]-[32] have had to 
rely on a supplementary procedure for computing the values 
of additional syndromes. 

In this section, we look at the general decoding problem 
for cross sections of extended multidimensional cyclic codes, 
and consider the issues which must be addressed in order to 
create a decoding algorithm for a specific code. Fig. 2  shows 
a template which may be used to describe a general decoding 
algorithm for cross sections of extended mutidimensional 
cyclic codes. In order to obtain a concrete algorithm from this 
template, one needs to specify which monomial order is used, 
what syndrome extension rule is used, and what termination 
criteria are used. We  show how the known decoding algorithms 
for multidimensional cyclic codes [ 191, [20] and algebraic- 
geometric codes [30]-[32] can be fit into this template. 

We  have defined a broad class of codes Cl(P, l(M)), 
defined by an arbitrary collection P of points, and an arbitrary 
collection M  of monomials, but aside from the two examples 
of HCRS codes and algebraic-geometric codes, we do not 
know how to determine, or design, the minimum distance of a  
general code in this class. If, in the future, other codes of the 
form C’(P, C(M)) are designed, then the template in Fig. 
2  may be useful in creating a decoding algorithm for these 
codes. Another possible avenue for exploration is to invent 
a specific decoding method based on the template, and then 
try to determine how the code must be designed to fit the 
decoding method. 

Whether or not the template decoding algorithm has any 
future application, it at least serves to make a comparison of 
the known decoding algorithms for HCRS codes and algebraic- 
geometric codes. The most prominent feature in these algo- 
rithms has been the use of a  syndrome extension method 
which in both cases led to a significant improvement in the 
error-correcting capability over previously known algorithms. 
These syndrome extension methods operate according to the 
same principles: when an unknown syndrome is encountered, 
the algorithm makes a “guess” at its value, and proceeds as if 
the syndrome were known to have that value. At some later 
point in the algorithm, it becomes apparent if the guess was 
correct or not, and if it was incorrect, the decoding algorithm 
reverts back to the point at which the guess was made, and 
tries another guess in its place. If this is to be an efficient 
procedure, we must ensure that the candidate values for the 
unknown syndrome may be chosen from a fairly short list, 
and that the correctness of the candidate value may be decided 
fairly quickly. As we shall see, the known decoding algorithms 
for algebraic-geometric codes and HCRS codes succeed on 
both of these counts. 

A Hyperbolic Cascaded Reed-Solomon code is a multidi- 
mensional cyclic code of the form Cyc (Hd) where Hd is the 
set defined in Example 2. In the decoding algorithm for HCRS 
codes, any monomial order 5~ may be used to govern the 
iterations of Sakata’s algorithm. The pure lexicographic order 
is an interesting choice because it gives detailed information 
on the configuration of the error, and facilitates solving for 
the error locations. In [19]-[21], it is shown that syndrome 
extension may be performed by the procedure shown in Fig. 
3. The resulting decoding algorithm is able to correct all error 
patterns of weight t or less for the HCRS code Cyc (Hzt+l). 

In order to use the algorithm of Fig. 2  for an algebraic- 
geometric code Co (D, a&), the curve X must be put into 
special position with respect to Q. The monomial order used 
must be the weighted-degree monomial order s0 (as defined 
in Theorem 12), induced by the orders of the coordinate func- 
tions. Whenever an unknown syndrome E, is encountered, the 
syndrome must be considered as part of a  bZock of syndroimes, 
defined by monomials xs of the same weighted degree 

B = Es: -&oi = 2~~0; . 
i=l i=l 

Recall that the polynomials in the ideal I(P) give m- 
dimensional linear recursion relations which are automatically 
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.z for each  f(x) E F, 

3 b&J 

4 Compute the predicted value P,+(f) 
5 gld- 

6  LetV={PU+ : fEF} 
7 for each  candidate value v E 1/‘, 

8 m  

9  Assume that Eu+ = v 

10 Run Sakata’s algorithm for a single iteration 
11 ;f iA+1 > t, 
1.2 reject the candidate value v 

13 3 ]A+] 5 t, 

14 accept the candidate value v, 
15 (and reject any remaining candidates) 

16 g&i 

17  $nJ 

Fig. 3. Syndrome extension for HCRS codes. 

satisfied by any transform array. It can be shown that these 
linear recursion relations can be used to determine any 
syndrome within a block B from any other syndrome in 
the same block, assuming all syndromes previous to the block 
are known. Thus the assignment of a  candidate value to a 
single syndrome in the block B implies a unique assignment 
of the other syndromes in the block, resulting in a candidate 
block. This leads to the syndrome extension scheme shown in 
Fig. 4, which is based on the original idea of Feng and Rao 
[30], [32]. The resulting decoding algorithm is able to correct 
all error patterns of weight t or less for the algebraic-geometric 
code Co(D, a&) with designed distance at least 2t + 1. 

We  consider the case of bounded distance decoding, in 
which the decoder is only required to correct errors of Ham- 
ming weight less than a given parameter t. In the course of 
Sakata’s algorithm, the delta set A = A(VU(E)) grows until 
its cardinality is equal to the Hamming weight of the error 
word (Theorem 27). Thus if the assignment of a  candidate 
value to an unknown syndrome leads to growth of the delta 
set A so that its cardinality exceeds t, it may be concluded that 
either the candidate value is incorrect, or the error pattern has 
weight exceeding t, and is therefore considered undecodable. 
This makes it clear that the procedures in Figs. 3  and 4 perform 
correctly when they decide to reject certain candidates. The 
real issue is the correctness of their decisions to accept certain 
candidates. The reader should consult the original references 
([19]-[21] for HCRS codes, and [30], [32] for algebraic- 
geometric codes) for proofs of the validity of these syndrome 
extension rules. 

In the decoding of HCRS codes (Fig. 3), it can be shown 
that any incorrect candidate value for the unknown syndrome 
can be rejected, in the manner described above, on the next 
iteration of Sakata’s algorithm. This means that a  candidate 
value may be accepted as the true value of the unknown 

Ibegin 

2  Form a bloclc B of unknown syndromes 
3 for each  f(x) E F, 

4 for each  r E B, 
5 & 

6  Compute Pr(f) 
7 Extend to a predicted block 

8 f?Ild- 

9 for each  candidate block 

10 beJiJ 
11 Run Sakata’s algorithm 
12 until the end of the block B 

13 ;f l-A+! > t, 

14 reject the candidate block 

15 3 ]A+\ 5 t, 
16 accept the candidate block 

17 (and reject any remaining candidates) 

18 $lcJ 

19  & 

Fig. 4. Syndrome extension for algebraic-geometric codes. 

syndrome if the delta set A does not grow to a size exceeding 
t on the next iteration. In the decoding of algebraic-geometric 
codes (Fig. 4), it is known that any incorrect candidate value 
for the unknown syndrome will be rejected within a fixed 
number of iterations, corresponding to a block of unknown 
syndromes. Therefore, a  candidate value may be accepted as 
the true value of the unknown syndrome if after the specified 
number of iterations, the size of the delta set still does not 
exceed t. 

The choice of termination criteria in Fig. 2  depends on 
a choice between two strategies for performing the overall 
decoding. One decoding strategy is for the decoder to fill 
in syndromes until the proper transform has been completed. 
Then the inverse transform may be applied, yielding the error 
word itself. A second strategy is to perform the syndrome 
decoding algorithm until we are certain that T  is a Grijbner 
basis for the error locator ideal V(E). At this point, the 
error locations are found by solving for the common zeros 
of the polynomials in F, and the error values are found by 
interpolation. 

Example 10: We  continue the decoding example with the 
syndrome array in (5) for a  Hermitian code Co(D, 23Q), 
which is capable of correcting any pattern of six or fewer 
errors. The last known entry of the syndrome array is Ez, 3, 
and after processing this syndrome the decoder has produced 
a minimal polynomial set F  = {frs, faa, fai}, and a witness 
set Q = {fi5, fai}, for &J(E), as listed in Table I. Next, 
the decoder encounters the unknown syndrome Ea, 0. This 
unknown syndrome must be processed as part of a  block of 
syndromes of order 24 

B = ((6, 01, (1, 4)). 
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The two-dimensional linear recursion relation represented by 
fii predicts that Es, a = a13, and the two-dimensional linear 
recursion relation represented by frs predicts that El, 4  = a’. 
According to the two-dimensional linear recursion relation 
represented by the polynomial y4 - x5 - y, the relation 

is satisfied by every syndrome array, and so either of the 
two unknown syndromes in the block B is determined by 
the other. Thus the values for the two unknown syndromes 
may be extended to two predicted blocks B1 and Bz: these 
are predictions for the simultaneous values of the entire block 
B of syndromes. 

B1: (I.&, o = a13, El, 4  = a’) 

B2: (E6,0 = c?, E1,4 = a2). 

Assume that the first candidate block B1 is correct, and 
continue Sakata’s algorithm. Under this assumption, the two- 
dimensional linear recursion relation represented by fsi re- 
mains valid at the syndrome Es, a, so no change takes place 
on the first iteration. Proceeding to syndrome El, 4, we find 
that according to our assumption, the two-dimensional linear 
recursion relation represented by frs is invalid at (1, 4), 
and so the point Span (fig) = (1, 2) must be appended to 
A, and (0, 2) must be appended as well (to make a well- 
formed delta set). Hence, A will have seven elements. Since 
we assume that no more than six errors have occurred, we 
reject this candidate block. Return to syndrome Es, 0 and 
consider the other candidate block B2 instead. Now, the two- 
dimensional linear recursion relation represented by fzi is 
invalid at (6, 0), and so the point Span(f2i) = (3, 0) must 
be appended to A. The new minimal polynomial set is then 
F+ = {fig, .f22, f23}> where 

f23 = x:fil + a8f21 

= x4 + d2x3 + xy + cG3x2 + 2y + d3x + 1 

and the new witness set is 8+ = {fis, f2i). Proceeding to 
syndrome El, 4, we find that the two-dimensional linear recur- 
sion relation represented by fis remains valid at the syndrome 
El, 4, so no change takes place on this iteration. The code 
Co(D, 23Q) is capable of correcting six errors, and the delta 
set A has six points upon completion of the block B, so 
according to the syndrome extension rule (Fig. 4, the predicted 
block B2 is accepted and the values Eg, 0 = ~8 and El, 4  = a2 
are assigned to the unknown syndromes. 

All further syndromes must be computed in the same way, 
by using predicted values, and deciding the correct candidate 
based on the size of the delta set. After a  few more iterations, 
the minimal polynomial set converges to a Griibner basis for 
the error locator ideal V(E). This Grijbner basis is given by 
the set F = (fl8, f24$ f26}, where 

f18 = y2 + d”xy + agx2 + ay + ax + a3 
f24 = X2Y + &X3 + CX5XY + cY7X2 + CdlY + CillX + Q6 

f2‘j = x4 + a4x3 + axy + (Y2x2 + a2y + Q5x + d3. 

In principle, the six error locations may be found as the com- 
mon roots of these three polynomials. In practice, however, it 
may be more efficient to continue generating syndromes until 
it becomes possible to apply an inverse transform. 

APPENDIX I 
PROOF OF THEOREM 15 

Theorem 15: Let X be a smooth projective curve, let Q 
be a point on X, and let N(Q) be the set of nongaps for 
Q. Assume that we have a set of integers (01,. .. , om}, 
0  < o1 < 02 < . . . < o,, which generates N(Q) as a 
semigroup, and rational functions & E L(o,Q) such that the 
pole order of q$ at Q is exactly o;, for each i = 1, . . . , m. 
Define the map from X\{ Q} to IF 7 

Let Xl\ be the image of X under this map, and let X’ c IF’” 
be the projective closure of the affine curve XL. 

1) The map P H (&(P),...,&(P)) extends to a bira- 
tional isomorphism of X and X’. 

Proof For a function 4, write its divisor as (#) = 
(I$)~ - (4)oo where (4)0, the divisor of zeros, and ($)co, the 
divisor of poles, are effective divisors. On the set Ui = X\Q, 
we map 

PH P’= (1: &(P):...:&(P)). 

On the set U2 = X\(&)c, we map 

P H P’ = (l/$,(P): &(P)/&(P):. . . : 1). 

The two maps are consistent on Ul n U2, and Q is mapped 
to the point Q’ = (0 : 0: . . . : 1). Thus the map extends to a 
map on all of X. 

Let L(ooQ) be the set of all rational functions on X with 
poles only at Q 

L(mQ) = (=j W . 
a=0 - 

Since L(ooQ) is closed under sums and products, it is a  
subring of the field of rational functions lF4(X). We  show that 
the field of fractions of L(ocQ) is the function field IF,(X). 
Suppose I$ E F,(X). R’ ternann’s theorem (Theorem 5) implies 
that for a  sufficiently large, L(aQ - ($)a) is nonempty. Thus 
there is a function 11, E L(aQ) with ($)a > ($)oo. Let x = 
$4. Then x has poles only at Q, and hence X E L(coQ). This 
shows that the original function 4 was a fraction 4 = xl+. 

Now we show that X + X’ is a birational isomorphism by 
showing that their function fields are isomorphic: Fp(X) ?Z 
IF,(X’). Since dimL(aQ) 5 1 + dimL((a - l)Q) for each 
a, we see (by induction) that a  basis for L(uQ) is obtained 
by choosing, for each nongap j 5  a, a  rational function 
Xj E L(jQ) whose pole order at Q is exactly j. Since 
the oi generate N(Q) as a semigroup, each nongap j is 
obtained as the sum j = Crioi for some 9” E Z1;1, and 
hence the “monomial” qY = 4;’ . . flz can be taken as the 
function xj. Thus certain monomials in the $i form a basis 
for L(uQ), and hence any function in L(uQ) is a polynomial 
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in the &. Since a is arbitrary, every function 4 E L(wQ) 
can be expressed as a polynomial in the &. Define a ring 
homomorphism K F,[yr, . . . , ym] + L(caQ) which maps 
Yl H ch,..‘,Ym t-+ bn. Then the above argument shows 
that 0 is surjective. 

Now suppose that a  polynomial f(yi, . . . , ym) is in the 
kernel of the map g. Then f(&, . . . , &) is a function in 
F,(X) which is equivalent to the zero function, and thus 
for any point P’ E XA, f (P’) = 0. Hence f E 1(X:). 
Conversely, if f E 1(X:), then f(&, . . . , &) is a function in 
F,(X) which vanishes at every point (rational or otherwise) 
of X\(Q). The only rational function which can vanish on 
an infinite set of points is the zero function, so f is in the 
kernel of 0. This shows that the kernel of the map 0 is the 
ideal I( XA ) . 

Thus L(caQ) is isomorphic to the quotient ring 
F4[y]/I(XL). But this is in fact the coordinate ring lF,[X:]. 
Since these two rings are isomorphic, their fields of fractions 
are isomorphic, proving that F,(X) Z  F4(X’). Thus X + X’ 
is a birational isomorphism. n 

2) The projective curve X’ is in special position with respect 
to the point Q’ E X’ which is the image of Q under the 
extended map X + X’. 

Prooj? By construction, Q’ is the unique point on the 
hyperplane at infinity. Note that since X is a smooth curve, 
it is a  nonsingular model of X’, and so the points of X are 
the places of X’. Thus Q is the only place centered at Q’. 
Also, the orders of the coordinate functions yi, . . . , ym are 
just the orders of the rational functions &, so they are distinct 
and ordered, and generate the semigroup N(Q) = N( Q’) of 
nongaps for the point Q’. 

The only thing remaining to show is that the points P’ of 
XL are nonsingular. To do this, we show that the local ring 
Opt (X’) is a discrete valuation ring, by showing that it is 
isomorphic to c?p(X), where P is a place of X centered at 
P’. The isomorphism between function fields maps a rational 
function 

.f(Yl,... > Ym)IdYl, . . . > YY,) E WC) 

to a rational function 

4 = f(h,. . , bn)lS(h, . . . , bn) E ~,(W. 

If f/g E Op,(X’), then we may assume that g(P’) # 0, and 
hence g(& (P), . . . , c+&(P)) # 0, and thus $ does not have a 
pole at P. Thus we have a (one-to-one) map from Op, (X’) 
to Op(X). 

Suppose now that 4 is an arbitrary element of Op(X). 
Consider its divisor (I$)~ of poles. If we choose a large 
enough, Riemann’s theorem implies that 

dim L(uQ - (4)oo) = 1 + dim L(uQ - (d)m - P) 

and so there is a function $ E L(wQ) with ($)c > ($)a 
and G,(P) # 0. Now let x = $4. Then X has poles only at 
Q, and so X E L(cxQ). S ince any element of L(wQ) is a 
polynomial in the &, write 

1c, = S(h>. ‘. > 4m), x = f(41>...,4rn). 

Then 

iI = g(41(P), . . . > 477x(P)) = @ (PI #  0  
and hence f/g is an element of the local ring c?p, (X’) which 
corresponds to the element X/I+!J = 4 of the local ring OF(X). 
Thus we have shown that the two local rings are isomorphic, 
and hence P’ is nonsingular. This completes the proof that X’ 
is in special position with respect to Q’. n 

3) The algebraic-geometric codes defined from X and X’ 
are identical when a point P E X is identfied with its image 
P’ E X’. In particular 

G(D’, a&‘) = CL(D, a&) 
Cc@', a&') = Cn(D, a&). 

Proof Any codeword in CL(D, a&) is of the form 

c = (4(Pl), . . . > 4CPn)) 

for some 4 E L(uQ). But 4 = f ($1, . . . , &) for some 
f(y1, ... , ym), ad f E L(aQ’). Thus 

c  = (f(G)>. . . > f (e3) 
is a  codeword in CL(D’, a&‘). Conversely, if f E L(aQ’), 
then 4 = f ($1, . . . , (bm) E L(uQ), and so the codewords 

c = (f(e), . . . > f (CL)) 
of CL (D’, a&‘) are codewords 

c = (4(Pl), . ‘. > 4(Pn)) 
of CL(D, a&). Since these two codes are the same, their dual 
codes are also the same. n 

APPENDIX II 
VERIFICATION OF SAKATA’S ALGORITHM 

Theorem 30 (Agreement Theorem): Suppose f (3;) and g(x) 
are valid up to all entries Q <T U, and suppose u > lead (f) + 
lead (g). Then f and g agree in their prediction for the value 
of E,, 

Pa(f) = P&7). 
Proof: By changing variables, we may rewrite (10) as 

By hypothesis, Eq = P,(g), for lead(g) < 4 <T ‘1~. Note 
that u  - lead (f) > lead (g), and so whenever s <T lead (f ), 
it follows that s 5 (s + u - lead (f )) <T U, and therefore 
Es++lead (f) = Ps+u-lead (f)(g). Thus we may apply (11) 

to obtain 

p,(f) = y&+gd (ijfsEs++l=W l 

= -1 c fsPs+u-lead(f) 
lc(f) S<T lead (f) 

1 
= lc (f) lc (g) 

c fs c  gr&+(s+u-lead (f))-lead (9). 

s<~ lead (f) r<rr lead (9) 
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By symmetry, the same expression must hold true when we 
reverse the roles of f and g 

1 
p”(g) = lc (f) lc (g) 

. c  Sr c  fsEe+(r+u--lead(g))-lead(f). 
T<T lead(g) S<T lead(f) 

Careful examination of these two expressions shows that they 
are just rearrangements of the same sum, and so we have 
proved that P,,(f) = P,(g). n 

Theorem 32: Suppose g @  V,(E). Then Span(g) E 
APL(E)). 

Proof: Let T  = lead (g) + Span (g). Then the m- 
dimensional linear recursion relation represented by g(z) is 
valid for all entries Eq, for Q <T r, and is invalid at entry E, 

Pr(g) # ET. (12) 
Moreover, T  <T ~1, since the m-dimensional linear recursion 
relation represented by g(x) is not valid for all entries up 
to E,. Suppose there exists a polynomial f(x) E V,(E) 
with lead (f) = Span (g). The m-dimensional linear recursion 
represented by the polynomial f(x) is valid at entry E,, and 
so P,.(f) = E,. Putting this together with (12), we find that 
Pf(f) #  P,(g). On the other hand, the polynomials f(x) 
and g(z) satisfy the hypotheses of the agreement theorem 
(Theorem 30), which implies that P,(f) = P,(g), and so we 
have reached a contradiction. Thus there does not exist any 
polynomial f (2) E V,(E) with lead(f) = Span(g). n 

Lemma 37: Each polynomial h(“)(x) computed in lines 
9-28 of Fig. 1  satisfies 

lead (h(“) ) = s 

h(‘) (5) E Vu+ (E) . 

Proof: The computations of the polynomials h(‘) (21) in 
lines 9-28 break down into three mutually exclusive cases: In 
case a) (lines 1 l-13), there exists a polynomial f(x) E 3\N 
with lead (f) = s. In case b) (lines 14-19) there does not 
exist a  polynomial f (5) E F\N with lead (f) = s, and 
s $ ‘(I+. Finally, in case c) (lines 20-27) there does not exist 
a  polynomial f (2) E 3\N with lead (f) = s, and s 5 u+. 

Case a): The polynomial h(‘)(x) = f(x) has the required 
leading monomial lead(f) = s. The polynomial f(x) is 
a  member of V,(E), so f(x) represents an m-dimensional 
linear recursion relation which is valid for all entries up to 
E,,. Moreover, the fact that f (2) $  N shows that the m- 
dimensional linear recursion relation represented by f (xc) is 
still valid at the entry E,,+. Therefore 

h(“)(x) = f(z) E V,+(E) 

Cases b) and c): In both cases b) and c), it is required to 
find a polynomial f E N with lead (f) 5  s. We  show that 
this is possible, before proceeding to analyze cases b) and c) 
individually. 

The point s is an exterior corner of the updated delta set 
A+, which contains the original delta set A(VU(E)) = A(3). 
First, we assume that s is not an exterior corner of the delta 
set A(3). The point s is nonetheless a point on the exterior of 

A(3), and so there exists a polynomial f(x) E 3 whose 
leading monomial lead (f) is an exterior comer of A(3), 
satisfying lead (f) 5  s. The fact that s is an exterior comer 
of the new delta set A+ thus implies that lead (f) must be in 
the interior of A+, for otherwise lead (f ), and not s would be 
an exterior comer of A+. Since 

lead(f) E A+ c A(VU+(E)) 

there is no polynomial with leading term lead (f) which is 
valid for the m-dimensional array E up to entry E,,+. Thus 
we can conclude that f ( ) x was found to be invalid at entry 
E Uf9 and therefore f (5) E N, as required. 

Now, we assume that s is an exterior comer of the delta set 
A(3). Thus there is a polynomial f (2) E 3 with lead (f) = s. 
Moreover, f(z) must be in the set N, or else case a) would 
apply. Therefore, in cases b) and c), it is always possible to 
find a polynomial f(x) E N, with lead (f) 5  s. 

Case b): Clearly, h(‘)(x) has lead (h(“)) = s, and since 
s p ‘11+, it is not possible to predict entry E,,+ using the m- 
dimensional linear recursion relation represented by h(‘) (z). 
Thus h(‘)(z) will be valid up to entry E,,+ if and only if it 
is valid up to entry E,,. But h”(z) is a  monomial multiple 
of f(x), and so by Theorem 26, h”(z) E V,(E). Therefore, 
hS(x) E Vu+(E). 

,Case c): First, we must show that it is possible to find g E 
8 with Span (g) 2 U+ - s. Suppose that it is not possible. This 
means that U+ - s is in the exterior of A(3), and therefore, 
u+ - s > p for some exterior comer p of A(3). There exists a 
polynomial f ‘(2) E 3 with leading monomial lead (f ‘) = p. 
Then we have lead (f’) + lead (f) I: p  + s 5 u+, and so by 
the agreement theorem (Theorem 30), the polynomials f’(z) 
and f (2) must have made the same (incorrect) prediction for 
E,+ . Thus f’(x) E N and hence Span (f’) = u+ - p  was 
one of the new excluded points used to form the set A+, and 
therefore, ‘(I+ - p  E A+. But now s _< u+ - p  implies that 
s is in the interior of A+, which means that we have arrived 
at a  contradiction. Thus it is always possible to find g E G 
with Span(g) 2 u+ - s. 

Next, we verify that the polynomial h(‘)(x), given in line 
26, has the required leading term. The polynomial h(‘)(z) is 
given as the sum of two polynomials. The first polynomial is 

which has leading monomial s. Note that 
entry E,,, and thus 

lead (9) + Spang IT ‘(L iT 

g is not valid up to 

?i+ 

In the expression for h(“)(z), the second polynomial is 

xsPan(g)-u++sg(Z) 

which has leading monomial 

Spang-u++s+lead(g)Ts. 

Thus lead (h(“)) = s. 
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To see that h(“) is valid up to entry E,,+, we assume that q 
satisfies q > lead (hS) = s, and q  ST u+, and compute 

1~ (h) (&a - r,(h(“))) = c hpEp+*-s 
P 

where the two terms TI and TZ are obtained from the expan- 
sion of the coefficients hp  

TI =  c fp-s+lead(f)Ep+g-s 
P 

= c .ft%--lead(f) 

=l:~f+*-.,f,] 

C  

0, for q  ST ‘11 = 
Sf, forq=u+ 

372 = c gp-span(g)+u+ -sEp+q-s 
P 

= c gtEt+p+span(g)--u+ 

for q’ T lead (g) + Span g, 
for q’ = lead (g) + Span g. 

Here, we have made the substitution 

q’=q+Spang-ut +lead(g) 

and so 

Putting the two terms back together, we find 

lc (h) (E, - Pq(h@))) =  { “0’ 
> 

;: ; 2;: 

proving that hcs) (x) is valid at entry E,,+. n 
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