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Abstract—The theory of error-correcting codes derived from
curves in an algebraic geometry was initiated by the work
of Goppa as generalizations of Bose-Chaudhuri-Hocquenghem
(BCH), Reed–Solomon (RS), and Goppa codes. The development
of the theory has received intense consideration since that time
and the purpose of the paper is to review this work. Elements of
the theory of algebraic curves, at a level sufficient to understand
the code constructions and decoding algorithms, are introduced.
Code constructions from particular classes of curves, including
the Klein quartic, elliptic, and hyperelliptic curves, and Hermi-
tian curves, are presented. Decoding algorithms for these classes
of codes, and others, are considered. The construction of classes of
asymptotically good codes using modular curves is also discussed.

Index Terms— Algebraic curves, algebraic-geometry codes,
asymptotically good codes, decoding algorithms.

I. INTRODUCTION

T HE origins of the subject of error-correcting codes are
found in the classical papers of Shannon [79]. The

subject developed rapidly, both in engineering practice and
as a mathematical discipline. The notions of Bose–Chaudhuri–
Hocquenghem (BCH), Reed–Solomon (RS), and Goppa codes,
in particular, achieved prominence with extensive research
contributions over a period of almost four decades. Along
with a developing mathematical theory of codes, went intense
research on the most efficient algorithms to decode them, an
effort that continues.

From a theoretical point of view, a significant research
objective was to construct asymptotically good codes, codes
whose parameters achieved the Varshamov–Gilbert lower
bound, introduced in the next section. Although there was
much interesting work on the problem [48], the goal remained
elusive.

While the construction of asymptotically good codes proved
difficult, the construction of many other interesting classes
of codes proceeded swiftly. Prominent among these are the
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Fig. 1. I: Gilbert–Varshamov bound, II: Tsfasman–Vlăduţ–Zink bound,
q � 49.

classes of BCH, RS, and Goppa codes, already mentioned,
whose mathematical properties and decoding algorithms were
widely studied. These classes of codes have codewords that
can be viewed as either the evaluation of certain functions on
a set of distinct elements in a finite field, or the evaluation of
residues there, and these notions have proved to be important.
While it was known [64] that there exists a sequence of Goppa
codes that met the Varshamov–Gilbert bound, their actual
construction proved more difficult. Goppa [33], [34] made the
crucial observation in generalizing these notions by, in one
instance, evaluating a set of rational functions at the points
on an algebraic curve. In making this step, many of the tools
needed to determine the important parameters of the code,
or bounds on them, such as the code length, dimension, and
minimum distance, already existed in the elegant theorems of
algebraic geometry, notably the Hasse–Weil theorem and the
Riemann–Roch theorem. Having evaluated the construction of
codes in this manner, it quickly led Tsfasman, Vlăduţ, and Zink
[91], [92], using modular curves, to show how asymptotically
good codes could be constructed over alphabets of size ,
a truly remarkable achievement (see Fig. 1).

The theory of algebraic-geometry codes involves the rel-
atively deep and fundamental results of algebraic geometry.
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While there are now several books that attempt to give self-
contained treatments of algebraic geometry and codes ([65],
[83], [90]) it nonetheless requires effort on the part of the
nonexpert to appreciate the significant developments of the
area. The aim of this paper is not so much to give a survey of
the rather large body of work that now exists in this area, but
to trace the evolution of the subject over the past few decades
from the earliest code constructions to the elegant and deep
theory that exists today. In particular, an attempt is made to
give some notion as to the role the properties of algebraic
curves has played in the subject. While the review has been
written for the nonexpert, some familiarity with the subject
of error-correcting codes and algebra has been assumed. The
aim has been to outline the construction of important classes
of codes instrumental in the development. It is also intended
to give a brief overview of those concepts from algebraic
geometry needed to appreciate the development, in a relatively
self-contained manner to allow such a nonexpert a glimpse into
this development of the subject.

The next section reviews the constructions of certain basic
classes of codes, RS, BCH, and Goppa, in such a manner that
makes natural the critical step that was taken in extending
these to constructions of codes from algebraic curves. The
mathematical background needed to understand the application
of algebraic geometry to coding is outlined in Section III.
While no proofs are given, the theory is illustrated with
examples and an informed reader should be able to appreciate
the ideas involved. Section IV uses the ideas developed to
outline the construction of codes that are derived from many of
the more commonly used curves, including the Klein quartic,
elliptic and hyperelliptic curves, and Hermitian curves. In
addition, interesting constructions due to Feng and Rao ([22],
[24]) are considered.

The study of decoding algorithms for codes from curves in
an algebraic geometry has been intense over the last decade,
meeting the challenge of extending the one-dimensional con-
cepts of decoding BCH, RS, and Goppa codes, to two dimen-
sions. This has involved consideration of the difficult problems
encountered in extracting decoding information from the two-
dimensional syndromes and the incorporation of the structure
of the curves in the decoding process. Progress on this problem
is covered in Section V.

Section VI outlines the use of modular curves in the
construction of sequences of asymptotically good codes, a
quest that started in the 1950’s with the establishment of the
Varshamov–Gilbert bound. The first step in this direction was
taken with the interesting construction of Justesen [48]. The
elegant and deep approach using the theory of modular curves
holds promise for even greater insight into this challenging
problem.

A few comments on the problems and challenges that might
be of interest in the future are given in the final section
of the paper. The introduction of algebraic geometry to the
problem of constructing codes, and in particular, families
of asymptotically good codes, has opened up fascinating
possibilities of both a theoretical and practical nature for future
research. It is hoped this paper might serve as a starting point
from which these possibilities might be appreciated.

II. FROM REED–SOLOMON CODES

TO ALGEBRAIC-GEOMETRY CODES

A setting that has proved fruitful for coding theory is to
view a code as a subset of the vector space of-tuples over
the finite field of elements, , which we denote as . The
(Hamming) distance between any two vectors of the space,,

is then the minimum number of coordinate positions in
which they differ, denoted by . The Hamming weight
of a vector , , is the number of its coordinate
positions which are nonzero. The minimum distance of a code
is then

If and has minimum distance, it is referred to
as an code.

Defining the sphere of radius with center as

it is immediately seen that it is possible to surround the
codewords of a code with minimum distance , with
nonintersecting spheres of radius where
is the floor function. Since each sphere contains

vectors it follows that

a result referred to as the Hamming bound for the code. A
code that achieves this bound with equality is called perfect
and the existence of perfect codes is now a settled problem
[61].

Designing codes that have a large minimum distance for
a given code size, and alphabet size, without more structure
is challenging. The addition of linearity to the code set, i.e.,
requiring that the codewords or vectors of form a linear
subspace of , allows considerably more to be said about
the code properties. A linear code is a -
dimensional subspace of with the property that any two
distinct codewords are at least distanceapart. Notice that
the addition of two codewords is also a codeword, and so the
minimum distance of the code is the weight of the smallest
weight nonzero codeword, i.e.,

The linear code , as a -dimensional subspace, can be
generated by a set of linearly independent codewords,

. If the codeword is viewed as the row
of a matrix , the code is the rowspace of , and
is referred to as a generator matrix of. A possible encoding
procedure for is then to encode the message vector
to . Indeed,
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Corresponding to the subspaceis the orthogonal subspace

where is the usual inner product on . Such a subspace
will have a generator matrix and, by definition

where is the matrix of zeros. Alternatively, we
can express the code as

Viewed in this manner, a codeword of weight
corresponds to a dependency relation among thecolumns
of the matrix corresponding to nonzero coordinates of.
From this observation it follows immediately that the code
has minimum distance of at leastif and only if no subset
of or fewer columns of are linearly dependent over

. Because the columns of are -tuples, and the
maximum number of such independent columns is , it
follows that . This is the Singleton bound
for linear codes. Codes which achieve equality are
referred to as maximum-distance separable (MDS).

By similar reasoning, suppose it has been possible to
construct a matrix over such that all
sets of or fewer columns are linearly independent. In
the “worst case” such sums give distinct -tuples and
hence if

then it is possible to add a column to the matrix which is
linearly independent to any set of other columns and
hence achieve an code. This is referred to as the
Varshamov–Gilbert bound. An asymptotic version of it will
be used in a later section.

It will be useful to recall a few elementary properties
of polynomials. By a fundamental theorem of algebra, a
polynomial of degree over a field has at most zeros in
that field. The smallest extension ofcontaining all the zeros
of the polynomial is called its splitting field. The polynomial

has a zero of order at if divides
while does not. A zero of order one is

called a simple zero.
One construction of a Reed–Solomon (RS) code over the

finite field is as follows. Let be a set
of distinct elements from and let denote the
set of polynomials of degree less than . Define the code

by

which has length and dimension , since a monomial basis
easily leads to a generator matrix of rank. Since a polynomial
of degree less then has at most zeros, each codeword
has weight at least . As it is easy to
construct polynomials with exactly this many zeros, this is the
minimum distance of the code, so the code is MDS. Cyclic

RS codes of length as well as extended noncyclic codes
of length can also be easily described.

Further, let be a set of nonzero, not
necessarily distinct elements from . The code

has the same parameters as the previous code and is re-
ferred to as a generalized RS (GRS) code with vector

. This minor adjustment can be useful in
some constructions.

The above code can be described in a slightly different
manner which will provide a useful perspective for the subse-
quent transition to construction of codes from algebraic curves.
Consider the set of pairs of elements . Pairs
which are scalar multiples of each other are identified, i.e., the
pairs are identified for all .
Thus all pairs can be grouped into equivalence classes with
representatives

and

and such classes are identified as the projective line.
The extension to higher dimensional projective spaces is
immediate, constructing from -tuples over .

Consider the set of rational functions where
and are homogeneous polynomials of the same

degree. Define now to be the vector space of all such rational
functions over with the additional property that they do
not have poles on except possibly at the point , a
point we will subsequently refer to as the point at infinity.
Furthermore, when the rational function does have a pole at
the point at infinity, it is of order less than. Clearly, a ratio
of polynomials of the form where
is homogeneous of degree, has this property. The RS code
can then be described as

where the are a subset of the projective points
not at infinity. The process of evaluating rational functions at
a sequence of points on a curve (so far only a line) will be of
importance to our development.

The addition of the requirement that every cyclic shift of a
codeword also be a codeword, has led to powerful techniques
for the design of good linear codes. While cyclic codes will
not be discussed in any detail here, the following construction
of BCH codes will be of interest. Let be a primitive th root
of unity in an extension field of , say , and
let be the polynomial of smallest degree with
zeros for some integer . Let the
degree of , referred to as the generator polynomial of the
code, be and note that since for general
, the maximum number of distinct cyclotomic cosets of these

elements is , each containing at most elements. Then

is a BCH code of length , dimension , and
minimum distance . The code can be viewed as
the null space, over , of the rowspace of the parity-check
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matrix . The
bound on the minimum distance follows from the fact that
any or fewer columns are independent, from a van der
Monde argument.

Notice that if we take the polynomial

then the above code, with replaced by and the
field of definition, replaced by , is an RS code , of
length , dimension exactly , and minimum distance exactly

. The BCH code is then a subfield subcode of
, i.e.,

i.e., the set of all codewords in with all coordinates in
the field . Such subfield subcodes have been of considerable
interest in more general situations than the particular case of
BCH codes described here, e.g., [83].

To prepare for a definition of Goppa codes, the definition
of BCH codes is first recast. With the same notation as above,
consider the computation

For the inner summation is zero, by
definition. Thus

for some polynomial , i.e., the summation is divisible by
. Thus

Consequently, a word , , is a
codeword iff it satisfies the above equation. The construction
yields either an RS or BCH code depending on the field of
definition. Notice that the polynomial has a zero of order

at .
The passage from the above definition to that of Goppa

codes will involve nothing more than replacing the sequence
of th roots of unity with an arbitrary set of distinct elements
and the polynomial with a more general polynomial .

(Note that this is not the generator polynomial used in the BCH
construction—it is conventional to use in both cases.)

Definition 2.1:Let be a set of
distinct elements in and be a monic poly-
nomial such that , . Then the Goppa
code is the set of words such
that

The polynomial is referred to as the Goppa polynomial.
Comparing to the previous formulation, if and

, a primitive th root of unity,
then is a BCH code with designed distance, although
it is noted that not all BCH codes are Goppa codes. By a
simple manipulation of the definitions, it will be shown that

where has degree, has dimension at least
and minimum distance at least .

It is also noted that is a subfield subcode of the dual
of a generalized RS code. To see this, let .
From the fact that

it follows that, for any codeword we have

where . Since the coefficient of must be zero
for , it follows that the inner product of the
codeword with the rows of the following matrix must be zero:

...
...

Using elementary row operations, this is easily reduced to a
parity-check matrix for the code of the form

...
...

...

from which the properties of the code noted above follow
readily. Thus the Goppa code is the dual of a GRS
code with vector . As the rank of this
matrix over is exactly , the rank over is at most .
Thus the dimension of is at least and the
minimum distance is at least .

To put the transition to codes from algebraic curves in
perspective, it will be of interest to recast the definition
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of Goppa codes. Consider a polynomial corresponding to a
codeword

and . Then

is obtained by canceling the simple pole in at and
evaluating the result at , i.e., it is the residue of at

. Let

and let

since by definition . Note that the residue of
at can be expressed as

which is zero only if as , by
definition. Thus much as was done for RS codes, define a
vector space of rational functions , , such that

i) has zeros where has zeros, with multiplicity
at least those of ;

ii) has poles only contained in the setand in that
case only poles of order one.

Consider the set of -tuples over defined by

where the residue of a rational function is defined in the usual
manner. It is seen immediately that the Goppa code
is the subfield subcode of this set over.

The two important perspectives to be drawn from this
section, perspectives that will survive the transition to codes
from algebraic curves intact, are the notions of defining
codewords in the first instance, as the evaluation of a rational
function at a fixed set of distinct places, and in the second
instance, as the set of residues of a rational function at a
fixed set of places. In the setting of algebraic geometry, the
fixed set of places will be drawn from the points on a curve
in an algebraic geometry. The two code constructions, using
evaluations and residues at this fixed set of places, will carry
over. The determination of code parameters, however, will
depend in crucial ways on the theory of algebraic curves.
The next section will serve as an overview of this theory,
in preparation for Section IV which considers classes of codes
that use these notions for their construction.

III. B ASIC THEORY OF ALGEBRAIC GEOMETRY

We introduce the basic notions of algebraic geometry, in
order to extend the construction and properties of codes
discussed in the previous section to algebraic-geometry codes,
to be discussed in the next section. We will give no proofs but
refer to the standard textbooks ([65], [83], [90]). The central
concepts required are limited and the material is illustrated
with examples. It attempts only to convey the central themes
of what is required to appreciate their application to coding.

A. Affine and Projective Varieties

Definition 3.1: Let be the finite field with elements
and its algebraic closure. The-dimensional affine space

is the set .
An element is called an affine point and if

with then the elements are
called thecoordinatesof the point . If is a subfield of
that contains and is a point with coordinates in , then

is called a -rational point and the set of -rational points
of is denoted .

On the set an equivalence relation
is given by

s.t.

The equivalence class of is denoted
.

Definition 3.2: The -dimensional projective space is
the set of all equivalence classes ,
not all . An element is
called apoint and are called homogeneous
coordinates of . If is a subfield of which contains

and is a point for which there exist homogeneous
coordinates is called a -rational point and
the set of -rational points of is denoted .

The set is called
the hyperplane at infinityand the points are the
points at infinity. The mapping : defined by

embeds in . As
a matter of notation, will be reserved throughout to denote
a point at infinity.

The one-dimensional projective space, also called the pro-
jective line, consists of the points together
with the point at infinity and this set has been used in
the previous section for the construction of RS codes.

A polynomial can be considered
as a map defined by

If we call a zero of .
More generally, with every we asso-

ciate thezero set of

for every
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Definition 3.3: A subset of is called analgebraic set
if there exists a such that

Definition 3.4: Let be an algebraic set. The set

for every

is called the ideal of .
It is easy to see that is indeed an ideal of

. The ring is Noetherian, that
is, every ideal is finitely generated. An idealwith a single
generating element is called principal and an ideal is prime if
it is not the whole ring and whenever then or

. An ideal is maximal in a set if there is no proper
ideal of that properly contains .

Lemma 3.5. Hilbert Nullstellensatz:Every maximal ideal
of is of the form
with , . For every element

the singleton is an algebraic set
with ideal .

Definition 3.6: An affine variety in is an algebraic
set where is a prime ideal. The set of -rational points
of is denoted . If has a set of generators in

we say that is defined over and denote
that . In this case we associate with the variety the
ideal

Definition 3.7: Let be an affine variety. The quotient ring

is called thecoordinate ringof .
If is defined over the quotient ring

is called thecoordinate ringof .

Remark: The coordinate ring of a variety can be consid-
ered as a set of polynomial functions with values indefined
at every point of : let and
such that . Put . This definition
is independent of the choice of the representative: if

, and then
and, therefore,

hence .
Since the ideal of the variety is a prime ideal the

coordinate ring is a domain. The following definition
is therefore possible.

Definition 3.8: Let be an affine variety. The field of
fractions of , denoted is called thefunction field
of . If is defined over we define the function field of

, denoted , as the field of fractions of .
It follows from the definition of the function field

that it is a finitely generated extension of , that is, there

exists elements such that
.

The dimensionof an affine variety is the transcendence
degree of over .

Definition 3.9: An affine curve is a variety of
dimension .

As a matter of notation we will use to denote a curve in
an algebraic geometry. When it is defined by a polynomial,
we will denote the polynomial by or simply when the
curve is understood.

Example 3.10:Let be an irreducible polyno-
mial and let us consider the variety

It is clear that the function field has transcendence
degree one, and therefore is an affine curve and since it
is contained in it is called anaffine plane curve.

Example 3.11:In the affine plane, we consider the parabola
with equation . Here the coordinate ring

consists of all the expressions of the form , where
and are in and satisfies . So, is an
algebraic extension of by an element , satisfying this
equation of degree.

A point on a curve , with equation
is said to benonsingularif the partial derivatives do not both
vanish at the point. Thetangent line at a point is a
linear polynomial(i.e., a polynomial of degree one) described
by the equation

where and are the partial derivatives of
with respect to and .

Example 3.12:The curve has a tangent
line at the point ,
since and . On the other hand, a
singular point occurs on the curve
at the point since both derivatives

and have a common zero at
[1]. In this case, the curve has two distinct

tangent lines at the singular point.

Definition 3.13: A curve is said to benonsingular (or
smoothor regular) if all the points on the curve are nonsin-
gular, otherwise the curve issingular.

A more general definition of singularity will be given later
in the section. In the example above, is nonsingular
while is singular. A test for singularity of a
curve is the existence, or not, of common zeros in the two
partial derivatives.

Example 3.14:As an example over a finite field, consider
the Hermitian curvefrom which an important class of codes
will be considered in the next section. These curves will be
used in a sequence of examples in this section. Consider the
finite field where . The Hermitian curve is
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described by the polynomial . The
curve is nonsingular since the derivatives

in

and

have no roots in common ( has no roots).
A monomialof degree is a polynomial

of the form with and , and
a polynomial is a homogeneous polynomialif is the sum
of monomials of the same degree.

A homogeneous polynomial is said to
have azero at a point
if . This makes sense since

if is homogeneous of degree.
For a polynomial of degree , the polynomial

will be homogeneous of degree. Conversely, one
can reduce a homogeneous polynomial of degreein
variables to a (nonhomogeneous) polynomial in variables.

More generally, with every set of homogeneous
polynomials from we associate the zero
set of

for every

Definition 3.15: A subset of is called a projective al-
gebraic set if there exists a setof homogeneous polynomials
such that

Definition 3.16: Let be a projective algebraic
set. The ideal in which is generated by all
homogeneous polynomials with for every
is called the ideal of and is denoted .

Definition 3.17: A projective variety in is a projective
algebraic set such that is a prime ideal.

The set of -rational points of is denoted . If
has a set of homogeneous polynomials from
as generators we say thatis defined over and denote that

. In this case we associate with the ideal

Definition 3.18: Let be a nonempty projective
variety. The quotient ring

is called the homogeneous coordinate ring of. If is defined
over then .

An element is said to be aform of degree
if where is a homogeneous polynomial of
degree .

The function field of is defined by

are forms of the

same degree and

and

are forms of the

same degree and

The dimensionof the projective variety is the transcen-
dence degree of over .

Definition 3.19: A projective curve is a projective
variety of dimension .

Example 3.20:Let be an irreducible
homogeneous polynomial and let us consider the variety

It is clear that this is a curve and since it is contained in
it is called theprojective curve.

We clarify the connection between projective and affine
varieties. For a polynomial

of degree set

then is a homogeneous polynomial of degreein
variables.

Consider now an affine variety and the corre-
sponding ideal . Define the projective
variety as follows:

for all

This variety is called theprojective closureof .
On the other hand, let be a projective variety and

suppose that

Define by

Then

is an affine variety and

and the projective closure of is .
If is an affine variety and its projective closure, the

function fields and are isomorphic and and
have the same dimension.

Example 3.21:The projective closure of the Hermitian
curve has the equation and this curve
has only one point at infinity, namely .
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B. The Local Ring at a Point

Let be a variety and . If then
with for an affine variety and

with for a projective variety. If there exists a
representative of and , is said to be
definedat .

The ring is defined at is
called thelocal ring at .

The evaluation of an element is defined as
in the affine case and in the projective

case let , where
and are homogeneous polynomials of degree. Let

. Since

we can put

if .
is indeed a local ring, its maximal ideal is

Definition 3.22: A valuation ring of the function field
is a ring with the properties

•
• For any , , or .

Theorem 3.23:Let be a valuation ring of the function
field . Then

• is a local ring and has as unique maximal ideal
where

• For , .
• is a principal ideal.
• If then any has a unique rep-

resentation of the form for some , .
• is a principal ideal domain. If and

is an ideal then for some IN.

Definition 3.24: Let be a valuation ring of and
its unique maximal ideal with . Then

has a unique representation with , . We
define and .

Observe that this definition does not depend on the choice
of generator of .

Theorem 3.25:The function satisfies

•
•
• with equality if

• s.t.
• for any
•
•
• .

A function satisfying the first five of these is called adiscrete
valuation and the ring a discrete valuation ring.

We will now connect the points of a variety with discrete
valuation rings of its function field. A more general definition
of the singularity of a curve or variety than the one given
earlier, follows:

Definition 3.26: Let be a variety and
. Let be a point of and consider the matrix

where

for , and (affine case) or
(projective case).

is called nonsingular if

and singular otherwise. The variety is called singular if it
has at least one singular point andregular otherwise.

Theorem 3.27:Let be a curve (projective or affine) and
a point of . is nonsingular if and only if is a

discrete valuation ring.

If the variety is defined over one can also consider the
function field . The definitions and the theorems still hold
when one exchanges and . If is a discrete valuation
of with valuation ring and maximal ideal then the
pair is called aclosed pointof and is
called the degree of the point. If then the closed points
correspond to the nonsingular points and all have degree 1.

Let denote the set of closed points of the curve.

Example 3.28:We will consider the projective plane curve
with equation over the field . In

, we can take as a local parameter.
Let . We will determine . We have

and the second factor is a unit in so .

C. Divisors, the Vector Space , and the Theorem of
Riemann–Roch

Let be a regular projective curve defined over. A
divisor of is a formal sum

where and all but finitely many ’s are zero. The
degreeof is

The divisors of form an additive group , the divisor
group of .
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Let . The order of at a point is defined
to be where is the discrete valuation corresponding
to the valuation ring . If , is said to have
a zero at , and if , is said to have apole at

. The principal divisor of an element is
defined as , and thezero divisorof is

and thepole divisor of is

The degree of a principal divisor is zero which gives that

On we define a partial order by

for all

Definition 3.29: If let

be the set of rational functions with poles only at the zeros of
the divisor and have zeros at the poles of.

Notice that the divisor of a product of two functions is
the sum of the respective divisors, , and
the divisor of the sum of two functions satisfies

, i.e., the minimum coefficient is
chosen, point by point. is a finite-dimensional vector
space over , its dimension is denoted . TheTheorem of
Riemannsays that there exists a nonnegative integersuch
that for every divisor of

and the smallest nonnegative integer with this property is
called thegenusand is denoted by or .

In order to determine one needs the so-calleddiffer-
entials. We can think of differentials as objects of the form

where and are rational functions, i.e., elements of
, such that the map which sendsto is a derivation.

A derivation is -linear and theLeibnitz rule
holds. We denote the set of differentials on

by . One can talk about zeros and poles of differentials. At
every closed point there exists alocal parameterthat is, a
function such that , and for every differential
there exists a function such that . The valuation

is now by definition , so we say that has a
zero of order if and has a pole of order

if . The divisor of is by definition
. The divisor of a differential is called

canonicaland always has degree .

In the same way as we have defined for functions
we now define the vector space with zeros and poles
prescribed by as

or

One could have defined the genus as the dimension of the
vector space of differentials without poles, that is, of ,
where is the divisor with coefficient at every closed point.
The dimension of is called theindex of specialityof
and is denoted by .

Theorem 3.30. Riemann–Roch:For a divisor of a curve
of genus

Furthermore, for all divisors and canonical
divisors .

Moreover it is a consequence of the Riemann–Roch theorem
that

Theorem 3.31:For any divisor with ,

Let be a differential. If is a closed point of degree
and is a local parameter at , then there exists a rational
function such that . This function has a formal
Laurent series , where the coefficients
and and . The residue of at is by
definition and is denoted by , where is
the trace map from to .

The residue theoremstates that for

Let be a point of degree one. An integer is called a
pole numberof iff there exists an with

. Otherwise, is called agap numberof . Clearly, is a
pole number if . Moreover, the set of pole
numbers form an additive semigroup since if
and then .

Theorem 3.32:Suppose and is a closed point of
degree one. Then there are exactlygap numbers

of and and .

An important case from the perspective of algebraic-
geometry codes is when the curve is nonsingular and
intersects the line at infinity in a single point, say. In
this case the elements of has a simple
description, since the rational functions and

represent a monomial generating set for.

Example 3.33:Consider the Hermitian curve with equation
over the field . Here and

, is a monomial generating set for

It is obvious that the sets and
each describes bases for.
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TABLE I
GAPS FOR THE HERMITIAN CURVE AT THE POINT Q

The notion of gaps and the genus of the curve are closely
related in this situation. As before, let and
and let and be the pole orders at of these
two functions. The semigroup of gaps is then generated by
and , so the genus of the curve is the number of elements in
IN that are not of the form , . For example,
if and then the gaps are , which in
turn implies that there are no rational functions on the curve
with these pole orders at .

Example 3.34:As an example, the Hermitian curve over
is regular and has genus . The

order of and is and , respectively. To see
this first consider the function . The equation

describes a line in the plane. The intersection with the
Hermitian curve, described by , are single
points of the form where . There are
exactly solutions for . These are the simple zeros of
the function over the curve. Thus we conclude thathas

zeros, and thus poles at the point and so the degree
of is . In the case of , the zeros in the
plane correspond to the line , intersects the Hermitian
curve at the single point . However, the order
of this single root is . This implies that the pole order
at , and thus the degree of on the curve, is equal to

. Table I shows some of these results for small
values of . The discussion can be cast more algebraically by
saying that at , the semigroup of pole
numbers are generated by the divisors and , that
is, , and it can be seen that

and which implies that
has the functions

as a basis. The above computation of the genus of the curve,
noted above, follows from this basis.

Example 3.35:We can directly calculate the dimension of
. We get

where is a gap . Note that
for .

D. Counting Points on Curves

Let be a regular curve defined over and let be the
number of points on of degree one over .

Definition 3.36: The zeta function of is defined as

The zeta function contains information about the number
of points in various extensions of . It has the following
property.

Theorem 3.37. Hasse–Weil:Let be the genus of . Then

where

where

C

and

and the are complex algebraic integers.
The proof of is difficult. It is an analog of

the Riemann hypothesis for curves over finite fields and was
proved by Weil. It has as a consequence the Hasse–Weil bound.

Corollary 3.38. The Hasse–Weil Bound:

Example 3.39:The Hermitian curve considered in Example
3.34 has points of degree one
over so and is therefore optimal with
respect to the Hasse–Weil bound. To calculate the number of
points we first note that is the only point with

. If we have . The right-hand side
is the trace function from to so from each of the
values of , where we get one solution and from
the values of where we get ’s.
This gives points, that is, .



2606 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998

E. Algebraic-Geometry Codes

The two code constructions at the end of Section II, one
consisting of evaluating rational functions at a sequence of
points, such as the case for RS codes and polynomial functions,
the other evaluating residues of rational functions at a sequence
of points, such as for Goppa codes, will be emulated for the
case when the sequence of points is obtained from curves in
an algebraic geometry.

In the first instance, let be a nonsingular projective curve
over of genus and let be rational points
on and , a divisor. Let be a
divisor with support disjoint from as noted, and assume
that .

Define the linear code over as the image of
the linear map

where

where is the function field of the curve and

The parameters of the code are established by using the
properties discussed in the previous section. The kernel of the
map is the set and

since if . The minimum
distance follows from the following theorem.

Theorem 3.40:The minimum distance of the code
satisfies

Proof: has at most zeros.

Thus the designed minimum distance of is within
of the Singleton bound.
To emulate the residue construction of the classical Goppa

codes, choose and as in the previous construction and
recall that for a divisor of the curve

where is the set of differentials. Define the map

The code is defined as the image under. Again,
from the properties developed in the previous section, in
particular as a consequence of the Riemann–Roch theorem,
it is straightforward to establish that

again within of the Singleton bound.
It follows from the Residue theorem that the codes

and are duals of each other. Furthermore, it is

possible to show [97] that there exists a rational differential
form with simple poles and with residue at the points

so that

with the divisor of . This implies that the residue con-
struction gives exactly the same class of codes as the first
construction. It is nonetheless useful to retain the two ap-
proaches to code construction.

The next section considers some particular classes of curves
and constructions of codes by the methods given here.

IV. CLASSES OFALGEBRAIC-GEOMETRY

CODES AND THEIR PROPERTIES

The previous section has established constructions of codes
from algebraic curves as a natural evolution from RS and
Goppa codes. Some classes of codes of particular interest that
arise from these constructions applied to specific classes of
curves are considered here. As a matter of notation, let
be the maximum number of points possible on a curve of genus

over . As in the previous section, for a specific curve we
will denote the number of rational points of the curve over

by , where the genus and field sizeare understood.

A. Codes from the Klein Quartic

The homogeneous curve

is referred to as the Klein quartic [83] which can be considered
over any field. Interest in this curve will often be for fields of
characteristic two. Since the curve is nonsingular of degree

over fields of characteristic not equal to(and the
curve is singular in that case), the genus of the curve is, by
the Pl̈ucker formula

Consider the number of points on such a curve over a field of
characteristic . It can be seen from the zeta function in Section
III, that to determine the number of points on the curve over
any extension field, it is sufficient to determine the number of
points over .

Over the homogeneous equation has the three solutions
, , and .

To determine the number of points over argue as follows.
For convert the equation to projective coordinates and
define to give

Consider solutions of the form , , ,
where . For a fixed

, the equation reduces to

If , the polynomial is irreducible over and there are
no solutions. For , there is one solution and
for the single solution is giving .
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To obtain the points over
where , primitive, it is readily checked that

and

are automorphisms of the set of points, of order and
of order . The point is a solution as are

These 21 points plus the original three points yield .
The numerator of the zeta function for the Klein quartic is
then obtained as

and the zeta function is

The number of points on the curve over , , is the
coefficient of in the series expansion of .

Codes of differing lengths can be defined with the Klein
quartic. Following the work of Hansen [39], define a set of
codes of length over . Using the evaluation construction
of the previous section, define and the divisor
with disjoint support

The code is defined by the mapping

Using the results of previous sections it can be shown the
dimension of over is and the minimum
distance of the code is . The codes have the
parameters

and in fact the lower bound on the minimum distance is
achieved for all values of in the range shown.

In a similar fashion, define a code of length by choosing
and the sum of the other 23 points. In this case,

the code has the parameters .

B. Codes from Elliptic and Hyperelliptic Curves

An elliptic curve in homogeneous coordinates over a field
(more formally taken to be the algebraic closure) is

irreducible and of the form

All such curves are of genus. Making the transformation
yields

(1)

In homogeneous coordinates, the point at infinity is
. If the coordinates are in , the elliptic curve

is said to be over .
For any such curve, it is possible to define an addition of

points by observing that the straight line through any two
points intersects the curve in a unique third point.
The “addition” of and is then defined as where
represents addition of points on the curve. Such an addition of
points is easy to appreciate over the reals and all the geometric
notions involved have straightforward analogs over a finite
field. Thus the points of the elliptic curve over , ,
have the structure of an Abelian group under this operation
of point addition. This structure is the basis of elliptic curve
cryptosystems [53], [62] which has generated further interest
in the subject, with its deep results and important connections
to number theory and other areas of mathematics [81].

In terms of the coefficients in (1) [62, p. 19], two fundamen-
tal quantities for the curve can be defined, the discriminant

, and the -invariant . The curve is nonsingular iff
and, if two curves are isomorphic they have the same

-invariant. Elliptic curves are well classified in terms of their
isomorphism classes and their group structure [81] but such
information is more than is required for our objectives.

Let be rational points of the elliptic curve
and the point at infinity. Choose the divisor as

and as for some positive integer
. The code over obtained has the parameters

and

Almost all of these codes will have a minimum distance of
falling short of the Singleton bound by one.

Van der Geer [94, p. 32] gives an example, credited to R.
Pellikaan, where a code over , obtained from an
elliptic curve, is actually an MDS code.

In the case when , it is known [14] that
has a basis of the polynomials

to give a code dimension of
which is if is even and if is odd. The minimum
distance of the code is .

To determine the number of points on the curve over, it
is sufficient to determine the number of points over, since
the curves are of genus. Thus if then

where and are solutions of the equation .
The weight enumerator of MDS codes is uniquely specified

by the code parameters. Since for (most) codes from elliptic
curves, , it is not surprising that some information
is available for such codes. The subject has been considered
by Katsman and Tsfasman, [50] (and in the book [90]). Define
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the weight enumerator of such a codeby

or

and, by the MacWilliams identities,

By applying these relationships to the case of an
code, it is found that [90, p. 302]

It is known that , where the prime indicates
weights in the dual code. For ,
and the codes are formally self-dual. If the code is
MDS. In general, it is possible to show that

and the determination of uniquely specifies the weight
enumerator of the code and hence of its dual. It is possible
to characterize as where is an integer with a
combinatorial interpretation in terms of curve parameters [90,
p. 303] but this is beyond our interests.

Recent authors ([9], [21]) have defined the defect of an
code to be , i.e., the amount

by which the minimum distance of the code fails to meet the
Singleton bound. Codes with defect which includes
most of the codes derived from elliptic curves, are referred to
as quasi- or almost-MDS codes. Further structural properties
of such curves can be established.

Clearly, curves with small genus and large numbers of
points are of interest in constructing codes. The quantity

, the largest number of points over for any curve of
genus , has been studied by several authors (e.g., [16], [58])
and the results find implications in coding theory. These refine-
ments of the Hasse–Weil bound (and the Serre improvement)
are briefly discussed for curves of small genus.

For curves of genus one, let . The
maximum number of points of a genus one curve then is

unless and is an odd integer, in which case

The case of genus is a little more complicated but,
interestingly, a complete answer is still possible [78]. Ifis
an even power of a prime, , then

and . If is an odd power of a prime
call special if or if there is an integer such that

or . If is not special then

and if is special then

if
if

where , the fractional part.
For specific results are available. Thus [30] for

except for where
. Tables for such functions for are

given ([2], [90]).
As a generalization of elliptic curves, consider the hyperel-

liptic curves, defined by an equation of the form

where is a polynomial of degree at most and
is monic of degree exactly . We require the curve to
be nonsingular, i.e., have no singular points
where both of the partial derivatives and

vanish. In such a case the genus of the
curve is . Notice that for elliptic curves is at most a
linear polynomial and a monic cubic, and the curve is
of genus .

If then the change of variables

transforms the equation to

In this case, if is a point on the curve, then
is also a point on the curve, the sum (addition

of points on the curve, ) of and the point at infinity.
If and is on the curve, then so also is

. In homogeneous coordinates the point at infinity
is and has multiplicity . The number of
rational points on the curve is bounded by

The following example [53], [94, p. 61], is instructive. Con-
sider the curve

of genus over . It can be shown using the techniques
established previously that the number of points on this curve
over is unless in which case it is

One can use either of the code constructions for hyperelliptic
curves to obtain codes. Continuing the previous example [94,
p. 61], over the curve has 33 points. Let be the sum
of the points not at infinity and the point at
infinity. For the code one obtains a sequence of
codes over with for
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, . The general question
of the maximum length possible for a code over from a
curve of genus either one or two is examined in [6] and [66].

C. Codes from Hermitian Curves

The Hermitian curve in homogeneous coordinates is given
by

over , a special case of the Fermat curve

for . The Hermitian curve is nonsingular and
its genus is given by . It will be shown
constructively that the number of rational points on the curve
is given by and since, by the Hasse–Weil theorem

all such curves are maximal. In projective coordinates the
curve is written

Choose [30, p. 1558] so that

which is always possible (note that the left side is the trace
over and ). Make the transformations

and

to yield the equation

The common pole of and is the point at infinity.
To describe the rational points on the curve [83, p. 203]

in slightly more detail than previously (Example 3.39), note
that for each there exists distinct elements
such that

and the solutions are .
To form a code of length over , take as the

sum of the rational points and for a positive
integer . It can be shown [83] that the elements

and

forms a basis of . The above monomials can be used
to construct a generator matrix of the code .

To determine the code parameters, define

and let .
To determine the dimension of the code , note that

for , is empty, and for

. Thus the interesting range for is
.

It is first noted that the dual code to is

and hence is self-orthogonal if
and self-dual iff , a case that is only
possible if for some positive integer. The dimension
of is given by the cases

if
if
if .

The minimum distance of satisfies

It can be shown that when

Finally, it is noted [83] that the automorphism group of
is quite large. As before, let be such that

For each of the values of there are exactly values of
satisfying the equation. For it is verified that if

is a point on the curve then so is where

Thus the automorphism group of the code contains a subgroup
of size . More recently it has been shown by Xing
[107] that, for , this is in fact,
precisely the automorphism group. For either
or

the symmetric group on letters. For the two cases of
or the group is slightly more complex,
of the form

AGL

where AGL is the affine linear transformation of a line
over and is a copy of the symmetric group .
Notice that in the case , and is
generated by the all-ones vector and

from which the result follows. The case for
follows from duality.

The Hermitian codes clearly have interesting structure.
Given their monomial basis of the form with restrictions
on the size of and , it is not surprising they can be expressed
as catenated versions of generalized RS codes [105].
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D. Other Constructions

Feng and Rao [22], [24] introduced two classes of codes, in
some sense a generalization of previous classes, but in terms
of methods used to establish their properties, quite novel. A
brief introduction to their definition is given here. The two
classes are given by

Type I:

where , , and

Type II:

where , . This
last type of curve is a generalization of the Klein curves with
equation: . The curves of Type I are
always irreducible and have exactly one point at infinity which
is regular iff . The properties of the evaluation codes
derived from these curves depends very much on the form of
the polynomials and the method used for the code
construction. Feng and Rao use the notion of a well-behaving
sequence of monomials for the code construction. Høholdt
et al. [44] analyze the properties of the codes using the notion
of an order function. This approach is briefly described here.
Let be an admissible order function on monomials and

. Every polynomial an -algebra, can
be written in a unique manner as

Define the mapping from to
by and if is the smallest positive
integer for which can be written as a linear combination of
the first monomials. The function satisfies the following
conditions:

i) iff ;
ii) for all nonzero ;

iii) with equality when
;

iv) if and then ;
v) if , then there exists such that

and any function satisfying these conditions is called an
order functionon . A weight function is an order function
satisfying the additional condition that .
It is not difficult to show that if there exists an order function
on then is an integral domain.

If is an ideal generated by the Type I polynomial
, and then there exists a weight

function on , is an integral domain, and is a prime
ideal. Furthermore the set

is a basis for and and .
For an ideal generated by a Type II equation

then has a basis

or

In this case, an order function may not exist but when it does
it must have the property that .

Using the notion of an order function, codes of Types I and
II, as evaluation codes, can be defined and bounds on their
minimum distance established. Readers are referred to [44]
for details on this approach.

V. DECODING OF ALGEBRAIC-GEOMETRY CODES

The decoding problem can be formulated as follows:

Definition 5.1: Let be an -code over the field
and . The function , the
power set on , where for any

is called adecoderwith capability of correcting errors. Here
is the sphere with radius centered at .

With this definition the following lemma is immediate.

Lemma 5.2:Let be an -code over the field with
minimum distance and let . Then for any

, .
Proof: Suppose . Then

so .

Most of the work in the constructions of decoders for
algebraic-geometry codes has been focused on designing
decoders with where is some lower bound,
e.g., the ones presented in Section III-E, on the minimum
distance of the code, but recently Shokrollahi and Wassermann
[80] have constructed -decoders for larger by extending
previous work of Sudan [88], who constructed such decoders
for Reed–Solomon codes. For a survey on the decoding of
algebraic-geometry codes and the history see Høholdt and
Pellikaan [45].

In this section we will describe a decoding algorithm for
algebraic-geometry codes of the form

where ; distinct -rational
points on a nonsingular absolutely irreducible curveof genus

defined over .
The decoder corrects up to errors where

is the Feng–Rao distance to be defined later. One has
with equality if . The code

has length and for any we have

for all

When the code has dimension
, since has dimension

from the Riemann–Roch theorem because and the
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evaluation map which maps into
is injective since .

Recall that a number is a nongap for if
. In this case there exists a function

which means that has a pole of order at and no other
poles.

The nongaps satisfy

and for , and the functions ,
provide a basis for .

Let denote the ring of all rational functions on with
poles only at , that is,

and let for , denote the pole order of at , that
is the smallest number, such that . If and

we define thesyndrome to be

so we have

for all with

In the decoding situation we receive a vectorwhich is
the sum of a codeword and an error vector . We have

if , so the syndromes can be
calculated directly from the received word if . The
standard decoding procedure for Reed–Solomon codes has the
following five steps.

1) Syndrome calculation.
2) Obtaining a polynomial, called the error-locator polyno-

mial, which has the error positions among its roots.
3) Obtaining error positions.
4) Calculating error magnitudes.
5) Recovering the codeword and the information symbols.

We will not discuss Steps 1) and 5) in detail since they are
fairly easy once we have a basis for , but we will
demonstrate how Steps 2)–4) are generalized to the codes

.
Let the error positions be . An element

satisfying

is called anerror locator. We remark that it follows from
the theorem of Riemann that the space indeed
contains a nonzero error locator since

so

dimension

If is an error locator we have for all since

On the other hand, we can prove the following.

Theorem 5.3:Let satisfy for
all with then is an error locator.

Proof: The condition implies that the vector with
coordinates , is a codeword in

. But so this code
has minimum weight at least
which is greater than and, therefore, and hence

, .

By combining the remark and the theorem one gets the
idea of obtaining the error locator in the following way.
Consider the following system of equations in the unknowns

:

or, equivalently,

It then follows from the discussion above that this system
indeed has a nontrivial solution and that is
an error locator.

The problem is that we only know if
, so in order to solve it we must have

that is, , with we get
.
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Example 5.4:The Hermitian curve over has equation
. It has genus , 64 -rational points

in the affine part, and one point at infinity. As in Example
3.34 we have , , and the functions ,

, , gives a basis for .
Let then we get a code over , so the
algorithm described above corrects errors.
Let be a primitive element of satisfying .
We consider a seven-error pattern where the errors are located
at the points , , ,

, , ,
, and the corresponding error values ,

, , , , , .
We get the table at the bottom of the preceding page. We
want a locator of the form

where the coefficients satisfy the equation

Here we have used that
and the corresponding expressions for , ,

, , and .
It can be seen that

is a solution so

The zeros of this polynomial are and ;
; .

Let , then we get

so

This was the original approach of Justesen, Larsen, Havemose,
Elbrønd Jensen, and Høholdt [47], and of Skorobogatov and
Vl ăduţ [82].

The calculation above makes it natural to look at the matrix
of syndromes

where is the smallest number such that . We will
first prove

Lemma 5.5: .
Proof: Decompose as a product of the three matrices

with elements , , ,
a diagonal matrix with in the diagonal,

and .
Then we have and

so

Definition 5.6: For let

and let be the number of elements in .
From the definition of the codes we have that if

and then but if
and then

but this implies that

Lemma 5.7: If then .
Proof: We can repeat the decomposition of the syndrome

matrix so this has , but the nonzero
elements appears in different rows and columns with zeros
above, so this rank is at least .

Definition 5.8: For the code we define

Theorem 5.9:The minimum distance of satisfies

Proof: This follows directly from the lemma.

Theorem 5.10:If then .
Proof: If , , and , we

see that if and we get solutions
and if or we get solutions so
from which the result follows.

We will now describe a procedure that, based on the known
syndromes , , determines the syndromes

, when .
Combined with Theorem 5.3 this then gives a method to find
an error locator. This is the brilliant idea of Feng and Rao
[23], that was made precise by Duursma [17].

We first note that in the syndrome matrix the first unknown
entries correspond to the indices but as soon as
we know one with we know all with

since so

(2)

where and and this relation is independent
of the error vector.
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Consider the matrix

If , then all entries of this matrix except
are known

...
...

...

Definition 5.11: If , that is, and
the three matrices , , and
have equal rank, then is called acandidatewith respect
to the code . If is a candidate, then there is a
unique value to assign to the unknown entry such that
the matrices and have equal rank.
The element is called thecandidate valueof the unknown
syndrome . If the candidate is calledtrue and
false otherwise.

Using the relation (2) every gives a candidate
value for . Denote the number of true candidatesand
the number of false candidates. An entry is called a
discrepancyif it is a candidate but the matrices and

have different ranks.
Suppose now . Denote the

number of discrepancies in the known part of the matrix by.
A candidate is incorrect if and only if it is a discrepancy, so

total number of discrepancies

If entry is a known discrepancy, then all entries
is the th row with and all entries the th
column with are noncandidates. If is not a

candidate, then there is at least one known discrepancy in the
same row or column. Thus the number of pairs
which are noncandidates is at most . The number of
candidates is , so

candidates noncandidates

Since , we therefore
get and hence

But this means that all true candidates give the same correct
value for , so we have proven the following theorem.

Theorem 5.12:If the number of errors in a received word
with respect to the code is at most , then
the majority of the candidates vote for the correct value of

, .

Hence we can use this theorem until we have all the
syndromes and then find the error locator. This completes Step
2). In this way we get an error locatorin , so
has at most zeros. If we have .
If , it is possible to extend the algorithm to get more
error locators, with the property that the number of common
zeros are . We can therefore find a set of at most

points that contains the error positions by evaluating
the function at all the points , so this almost
completes Step 3).

Example 5.13:We consider the Hermitian curve of Exam-
ple 5.4 with , so we get a code over .
We will correct the same seven-error pattern as in Example 5.4.
The syndrome matrix is (in powers of, with indicating a
zero) as shown at the bottom of this page. Heredenotes the
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syndrome corresponding to with , which
is the first unknown.

Using row operations one gets the matrix at the bottom
of this page. From this it is seen that the positions ,

, and are candidate positions and by keeping
track of the performed row operations one sees also that the
candidate values in all three cases are, so this is the correct
syndrome . In the same manner one finds ,

, , , ,
which corresponds to the results of Example 5.4 and we can
now apply the basic algorithm for the code as before.

However, since we now know at most positions
that include the error positions we can solve

the system of linear equations given by

for all

where is the parity-check matrix of the code. It is clear that
the error vector is a solution and another solutionwould
give so would be a codeword of weight
at most and hence must be zero. Therefore, .

In this way we have found the error vector and Steps 3)
and 4) are completed.

The way we have presented the solution to the decoding
problem has the complexity of solving systems of linear
equations, and is similar to the Peterson algorithm in using
error-locator polynomials for decoding Reed–Solomon codes.
It is possible to get lower complexity by using Sakata’s gen-
eralization of the Berlekamp–Massey algorithm, as was done
by Sakata, Elbrønd Jensen, and Høholdt in [77], O’Sullivan
in [67], and Saints and Heegard in [71]. It is also possible to
find the error values by using a generalization of the Forney
formula, this was done by Leonard [56], Hansen, Jensen, and

Kötter [40], and by O’Sullivan [68]. One could use the voting
procedure described above to find all syndromes and then use
a discrete Fourier-like transform to get the error values. This
is the approach of Sakata, Jensen, and Høholdt [77].

VI. A SYMPTOTICS OFALGEBRAIC-GEOMETRY CODES

One reason for the interest in algebraic-geometry codes is
the fact that those codes can be used to give an asymptotically
good sequence of codes with parameters better than the
Varshamov–Gilbert bound in a certain range of the rate and
for large enough alphabets. In this section we will review the
construction.

Recall that a code is called an -code over if
is a subset of with minimum distance and .
Let

there exists an

code over

and

for (3)

It is not hard to see that

for (4)

and the Varshamov–Gilbert bound is the fact that

for (5)
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where is the -ary entropy function defined by

In [91], it is shown that by using algebraic-geometry codes it
is possible to prove that

(6)

if is a square.
It turns out that (6) gives an improvement of (5) if .

The inequality (6) is the Tsfasman–Vl˘aduţ–Zink bound. Fig. 1
shows the two bounds for .

Let be the rate and the relative minimum
distance of an algebraic-geometry code as defined in Section
III. It then follows from the results in that section that

(7)

where is the genus of the curve involved in the construction.
In order to construct a sequence of good codes we therefore

need curves with low genera and many-rational points. For
a curve over of genus with -rational points we get
from the Hasse–Weil bound (3.38) that

(8)

Let

where is the maximal number of -rational points on a
curve of genus over . The Hasse–Weil bound implies that

(9)

In 1983, Vl̆aduţ and Drinfeld [16] improved on (9) by showing
that

(10)

When is a square, Ihara in [46] and Tsfasman, Vl˘aduţ, and
Zink [92] showed that

(11)

by studying the so-calledmodular curvesover finite fields.
This in turn means that there exists a sequence of codes

satisfying

when is a square (12)

and, therefore, (6) follows.
The construction using modular curves is difficult. It is

possible to do this with polynomial complexity but the ac-
tual construction of generator or parity-check matrices is
intractable, so many researchers have tried to find a more
simple construction. In [22], Feng and Rao suggested that one

could get asymptotically good codes by using the so-called
generalized Klein curves, which are defined by the equations

over .
Pellikaan tried to determine whether this claim was correct

(the curves are asymptotically bad as recently proved by
Garcia and Stichtenoth), and suggested using the curves with
equations

over . This led Garcia and Stichtenoth in [28] to study the
affine variety over , given by the equations

(13)

and they showed that is indeed a curve and

(14)

so in this way one can obtain an asymptotically good sequence
of codes meeting the Tsfasman–Vlăduţ–Zink bound. Notice
that the equations are of the following type:

for

where

The affine plane curve with equation has the
property that for every nonzero element there are
exactly nonzero solutions in of the equation .
This is seen by multiplying the equation withand replacing

with . Then we get the equation , which is
an equation of the Hermitian curve over . For every given

in the element is in and since the left side is
the trace map from to we get distinct ’s such that

. If, furthermore, is not zero, then
is defined and is also nonzero. Therefore, the curvehas

points with nonzero coordinates in . Consider the
map

defined as

If is a given -rational point of and
, then there are exactly possible nonzero values

for such that is a point of .
Therefore, by induction, it is shown that

The genus of the curve is more difficult to calculate. It
is done by induction using the Hurwitz–Zeuthen formula [83]
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to the covering , which in this case is an
Artin–Schreier covering. The result [30] is

if

if

(15)

from which (14) follows.
In order to make the codes really constructive one needs to

find the right divisor and the bases for the vector spaces
. This seems to be very difficult. For the codes coming

from it has been done by Voß and Høholdt in [101].
Garcia and Stichtenoth [28] also presented another asymp-

totically good sequence of curves. Here the defining equations
are

(16)

over .
Here one also has

(17)

and, moreover, quite recently Pellikaan, Stichtenoth, and Tor-
res in [69] succeed in calculating recursively the nongap
sequence of , the point at infinity.

Let denote the semigroup of nongaps atin . For
let

if is even
if is odd.

(18)

Then and for

(19)

One could hope that this will lead to a determination of the
basis of for .

The two sequences of curves given by (13) and (16) have
recently been shown to be specific examples of modular curves
by Elkies [20].

VII. CONCLUSIONS

The past fifteen years has seen extraordinary developments
in the application of the ideas of algebraic geometry to the
construction of codes and their decoding algorithms. While
the highlight of these developments has been the construction
of asymptotically good codes, very significant advances have
been achieved in other directions. For all of the developments
achieved to date, it is clear that many interesting challenges
remain and other avenues yet to explore. These might include
the following problems.

It is perhaps true that codes from geometries have yet to
have an impact in practice. The development of classes of
codes with the simplicity and efficiency of both encoding and
decoding algorithms that rival those of Reed–Solomon codes,
for example, will be required to break through current practice.
While the development of asymptotically good codes over
fields of size at least is an impressive achievement, the

development of asymptotically good binary codes, using ideas
from algebraic geometry, remains an elusive and challenging
goal.

The combinatorial structure of linear codes has been an
interesting chapter in coding theory. Designs with excellent
parameters often result from codes with exceptional structure,
such as the Golay and quadratic residue codes and extremal
self-dual codes [10]. With the superior properties of code
classes developed from algebraic geometry, one might expect
an investigation of their combinatorial properties would show
promise. The investigation of such structure that utilizes the
properties of the curves from which the codes are obtained,
might prove interesting.

The intimate connections between codes and lattices, and
more generally, sphere packings in Euclidean spaces, is now
well established and a very active area of research [7]. The
lattices and sphere packings derivable from codes in algebraic
geometries where the resulting properties can be related to
the properties of the curves used, might prove interesting.
For example, lattices resulting from certain elliptic curves
[18], [19], yield the best known packing densities for their
dimensions. Perhaps further investigations in these directions
will yield results of interest.

There is little doubt that future investigations of the ideas
of algebraic geometry applied to these, and other, areas will
reveal new and exciting results and directions. One cannot
help but feel that the mathematical elegance of the ideas of
algebraic geometry has yet to be fully exploited. It is hoped
that this brief review has provided a look at where the subject
stands today, as a platform for further work.
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