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Abstract—The theory of error-correcting codes derived from O((S)
curves in an algebraic geometry was initiated by the work
of Goppa as generalizations of Bose-Chaudhuri-Hocquenghem
(BCH), Reed—Solomon (RS), and Goppa codes. The development
of the theory has received intense consideration since that time
and the purpose of the paper is to review this work. Elements of
the theory of algebraic curves, at a level sufficient to understand
the code constructions and decoding algorithms, are introduced.
Code constructions from particular classes of curves, including
the Klein quartic, elliptic, and hyperelliptic curves, and Hermi-
tian curves, are presented. Decoding algorithms for these classes
of codes, and others, are considered. The construction of classes of
asymptotically good codes using modular curves is also discussed.

Index Terms— Algebraic curves, algebraic-geometry codes,
asymptotically good codes, decoding algorithms.

I. INTRODUCTION

HE origins of the subject of error-correcting codes are
found in the classical papers of Shannon [79]. The
subject developed rapidly, both in engineering practice and
as a mathematical discipline. The notions of Bose—Chaudhuri— 0 (@1)q 1 d
Hocquenghem (BCH), Reed—Solomon (RS), and Goppa codeg, 1. |: Gilbert-Varshamov bound, II: Tsfasmanauli-Zink bound,
in particular, achieved prominence with extensive resear¢h® 49:
contributions over a period of almost four decades. Along

with a developing mathematical theory of codes, went intenggsses of BCH, RS, and Goppa codes, already mentioned,
research on the most efficient algorithms to decode them, gRose mathematical properties and decoding algorithms were
effort that continues. _ o widely studied. These classes of codes have codewords that
From a theoretical point of view, a significant researchyn pe viewed as either the evaluation of certain functions on
objective was to construct asymptotically good codes, codese; of distinct elements in a finite field, or the evaluation of
whose parameters achieved the Varshamov-Gilbert 10Wgkjqyes there, and these notions have proved to be important.
bound, introduced in the next section. Although there Wagye it was known [64] that there exists a sequence of Goppa
much interesting work on the problem [48], the goal remalne&des that met the Varshamov-Gilbert bound, their actual

elusive. . o
truct d difficult. G 33], [34 de th
While the construction of asymptotically good codes prove?nS fuction proved more dimcu oppa [33], [34] made the

difficult. th fructi ¢ ther int i | ucial observation in generalizing these notions by, in one
fmeult, the construction ot many other interesting classq stance, evaluating a set of rational functions at the points

of codes proceeded swiftly. Prominent among these are the . . .
on an algebraic curve. In making this step, many of the tools
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While there are now several books that attempt to give self- Il. FROM REED-SOLOMON CODES
contained treatments of algebraic geometry and codes ([65], TO ALGEBRAIC-GEOMETRY CODES

[83], [90]) it nonetheless requires effort on the part of the A getting that has proved fruitful for coding theory is to

nonexpert to appreciate the significant developments of 9@,y 5 codeC as a subset of the vector spacestuples over
area. The aim of this paper is not so much to give a survey @k finite field ofq elementsFF,, which we denote aB”. The
the rather large body of work that now exists in this area, b amming) distance between any two vectors of thqe space
to trace the evolution of the subject over the past few decaggs F7 is then the minimum number of coordinate positions in

from the earliest code constructions to the elegant and d&gRich they differ, denoted byi(a, b). The Hamming weight
theory that exists today. In particular, an attempt is made £ 5 vectora e F?, w(a), is the number of its coordinate

give some notion as to the role the properties of algebraigsitions which are nonzero. The minimum distance of a code
curves has played in the subject. While the review has begniyen

written for the nonexpert, some familiarity with the subject
of error-correcting codes and algebra has been assumed. The d= min d(a,b).
aim has been to outline the construction of important classes  beC, azb
of codes instrumental in the development. It is also intend¢fd|C| = A and C has minimum distancd, it is referred to
to give a brief overview of those concepts from algebraigs an(n, M, d), code.
geometry needed to appreciate the development, in a relativel{Defining the sphere of radiuswith centerz as
self-contained manner to allow such a nonexpert a glimpse into
this development of the subject. S(x, r) ={a e Fyld(a, ) <7}

The next section reviews the constructions of certain ba?c
classes of codes, RS, BCH, and Goppa, in such a manner ewords of a codes with minimum distanced, with

makes natural the critical step that was taken in extendi %nintersecting spheres of raditis= |(d — 1)/2] where |-

these to (_:onstructlons of codes from algebraic curves. T €he floor function. Since each sphere contains
mathematical background needed to understand the application

is immediately seen that it is possible to surround the

of algebraic geometry to coding is outlined in Section IlI. t :
While no proofs are given, the theory is illustrated with > <i>(q_1)
examples and an informed reader should be able to appreciate =0

the ideas involved. Section IV uses the ideas developedgctors it follows that

outline the construction of codes that are derived from many of .

the more commonly used curves, including the Klein quartic, |C|{Z <ﬁ)(q _ 1)71} <q"
elliptic and hyperelliptic curves, and Hermitian curves. In ? -

addition, interesting constructions due to Feng and Rao ([22], )
[24]) are considered. a result referred to as the Hamming bound for the codé\

The study of decoding algorithms for codes from curves gpde that achieves this bound with equality is called perfect

an algebraic geometry has been intense over the last dec&fd the existence of perfect codes is now a settled problem

meeting the challenge of extending the one-dimensional cdRil:

cepts of decoding BCH, RS, and Goppa codes, to two dimenPesigning codes that have a large minimum distance for

sions. This has involved consideration of the difficult problenf 9iven code size, and alphabet size, without more structure
encountered in extracting decoding information from the twé® challenging. The addition of linearity to the code set, i.e.,
dimensional syndromes and the incorporation of the structJfgUINng that the codewords or vectors ©f form a linear

of the curves in the decoding process. Progress on this problefpspace of=y, allows considerably more to be said about
is covered in Section V. the code properties. A lineafn, k, d), code C is a k-

Section VI outlines the use of modular curves in thdimensional subspace &f; with the property that any two

construction of sequences of asymptotically good COdes,dg;tinct codewords are at least distantepart. Notice that

quest that started in the 1950’s with the establishment of e addition of two codewords is also a codeword, and so the
Varshamov—Gilbert bound. The first step in this direction wdgnimum distance of the cc_Jde is the weight of the smallest
taken with the interesting construction of Justesen [48]. THeight nonzero codeword, i.e.,

=0

elegant and deep approach using the theory of modular curves d=min d(a, b) = min _w(a).
holds promise for even greater insight into this challenging a7b ’ a€C,a70
problem. The linear codeC, as ak-dimensional subspace, can be

A few comments on the problems and challenges that migg@nerated by a set of linearly independent codewords,

be of interest in the future are given in the final sectio -+, g, € F™. If the codewordg is viewed as the row

of the paper. The introduction of algebraic geometry to thﬁ’ak X n matrix @, the codeC is the rowspace of, andG
problem of constructing codes, and in particular, familie§ \eferred to as a generator matrix@f A possible encoding

of asymptotically good codes, has opened up fascinatlBgocedure folC is then to encode the message veatoe F*
possibilities of both a theoretical and practical nature for futugs mG. Indeed 1

research. It is hoped this paper might serve as a starting point
from which these possibilities might be appreciated. C={cle=mG, me [F’,;‘}.
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Corresponding to the subspa€keis the orthogonal subspace RS codes of length — 1 as well as extended noncyclic codes
of length ¢ can also be easily described.

Further, let{wg, v1, -+, v,—1} be a set of nonzero, not
necessarily distinct elements frofy,. The code

Cr={zeF}|(z,e)=0,Vee C}

where(z, ¢) is the usual inner product dff;. Such a subspace

will have a generator matri¥! and, by definition C' = {(voflag), vif(ew), -+, Un_1 flam_1)), f € L}
GH'=0 has the same parameters as the previous code and is re-
where0 is thek x (n — k) matrix of zeros. Alternatively, we ferred to as a genera_hzeq RS (C.;RS) code with veetor .
(vo, v1, **+, Un—1). This minor adjustment can be useful in
can express the code as ;
some constructions.
C={ce [Fg|cHt =0¢c¢ [Fg—k}, The above code can be described in a slightly different

manner which will provide a useful perspective for the subse-
Viewed in this manner, a codeword € C of weight w quent transition to construction of codes from algebraic curves.
corresponds to a dependency relation amongutheolumns  Consider the set of pairs of elemefits, z»), =; € F,. Pairs
of the matrix H corresponding to nonzero coordinates(@f which are scalar multiples of each other are identified, i.e., the
From this observation it follows immediately that the cade pairs B(x1, 12) = (Bz1, o) are identified for allg € Fr.
has minimum distance of at leagtif and only if no subset Thus all pairs can be grouped into equivalence classes with
of d — 1 or fewer columns offf are linearly dependent overrepresentatives
F,. Because the columns df are (n — k)-tuples, and the
maximum number of such independent columns:is k, it (1, o), aeFgand(0, 1)
follows thatd < n — k + 1. This is the Singleton bound
for (n, k, d) linear .COdeS' .COdeS which achieve equality Fhe extension to higher dimensional projective spaces is
referred_ tq as maX|m_um—d|stance se_parable (MDS). . immediate, constructin@” from N + 1-tuples overF,.

By similar reasoning, suppose it has been possible 10cqiger the set of rational functionée, y)/b(x, y) where
construct a(n — k) x (n — 1) matrix Qver[Fq .SUCh that all a(zx, y) andb(z, y) are homogeneous polynomials of the same
sets“of(d ~2) o,r, fewer cqumn_s are "T‘ea”-‘/ independent. IrEllegree. Define nou to be the vector space of all such rational
the wo_rst case” such sums give distinet — k)-tuples and functions overlr, with the additional property that they do
hence if not have poles o' except possibly at the poirD, 1), a

- =2 1 . point we will subsequently refer to as the point at infinity.

> < , )(q -1) Furthermore, when the rational function does have a pole at
=0 the point at infinity, it is of order less thaln Clearly, a ratio
then it is possible to add a column to the matrix which i8f polynomials of the formu(z, y)/!, I < k wherea(z, y)
linearly independent to any set @f— 2 other columns and is homogeneous of degréehas this property. The RS code
hence achieve afw, k, d), code. This is referred to as thecan then be described as

and such classes are identified as the projective he

Varshamov—Gilbert bound. An asymptotic version of it will C
= P --- P,), I
be used in a later section. {(AR) f(Pn), fEL}
It will be useful to recall a few elementary propertiesvhere theP, ---, P, are a subset of the projective points

of polynomials. By a fundamental theorem of algebra, @ot at infinity. The process of evaluating rational functions at

polynomial of degree: over a fieldF has at most. zeros in  a sequence of points on a curve (so far only a line) will be of

that field. The smallest extension Bfcontaining all the zeros importance to our development.

of the polynomial is called its splitting field. The polynomial The addition of the requirement that every cyclic shift of a

f(x) € F[z] has a zero of ordem at 3 if (z — 3)™ divides codeword also be a codeword, has led to powerful techniques

f(x) while (z — 3)™*' does not. A zero of order one isfor the design of good linear codes. While cyclic codes will

called a simple zero. not be discussed in any detail here, the following construction

One construction of a Reed-Solomon (RS) code over tb€BCH codes will be of interest. Let be a primitiventh root

finite field F, is as follows. Let{a, i, -+, a,,—1} be aset of unity in an extension field of,, sayF =, n|¢™ — 1, and

of n distinct elements fronf, and letL C F,[z] denote the let g(x) € F,[z] be the polynomial of smallest degree with

set of polynomials of degree less thar< n. Define the code zeros{ca’, i = 1, 2, ---, 2t} for some integet > 1. Let the

C by degree ofy(x), referred to as the generator polynomial of the

code, ben — k£ and note that — £ < 2tm since for general

C'=1(f(a), flaa), -+, flan-1)), f € L} g, the maximum number of distinct cyclotomic cosets of these

which has lengtm and dimensiork, since a monomial basis eléments i, each containing at most elements. Then
easily leads to a generator matrix of rankSince a polynomial C = {a(x)g(z)|deg (a(x)) < k, a(z) € F,[z]}

of degree less theh has at most — 1 zeros, each codeword

has weight at least — (k — 1) =n — k+ 1. As itis easy to is a BCH code of length:, dimensionk > n — 2¢tm, and
construct polynomials with exactly this many zeros, this is thminimum distanced > 2¢ + 1. The code can be viewed as
minimum distance of the code, so the code is MDS. Cyclibe null space, oveF,, of the rowspace of the parity-check



BLAKE et al. ALGEBRAIC-GEOMETRY CODES 2599

matrix H = (o), i = 1,2,---,2¢t,5 = 1,2, ---, n. The (Note that this is not the generator polynomial used in the BCH
bound on the minimum distance follows from the fact thatonstruction—it is conventional to uggz) in both cases.)
any 2t or fewer columns are independent, from a van der
Monde argument.

Notice that if we take the polynomial

Definition 2.1:Let L = {«g, o1, -, an—1} be a set ofn
distinct elements i~ andg(z) € F - [x] be a monic poly-
nomial such thag(«;)#0,¢=0,1,---,n—1. Then the Goppa

2t ‘ codel'(L, g) is the set of wordgco, c1, - -+, ¢, 1) €F7 such
h() = [J(x — ') € Fyma] that
=1
n—1
then the above code, with(z) replaced byh(xz) and the Z Ci = 0mod g(x).
field of definition,F, replaced byF,~, is an RS cod&”, of io £ T

lengthn, dimension exactly;, and minimum distance exactly
d = 2t + 1. The BCH codeC is then a subfield subcode of The polynomiak(z) is referred to as the Goppa polynomial.
', ie., Comparing to the previous formulation, gfx) = z2* and
L=1{a"%0<4i<n-1}, aa primitive nth root of unity,
C=C'nFy then['(L, ¢) is a BCH code with designed distanéealthough
it is noted that not all BCH codes are Goppa codes. By a

i.e., the set of all codewords i’ with all coordinates in . I ioulati f the definiti + will be sh h
the fieldF. Such subfield subcodes have been of considera3{g'P'¢ manipu ation of the dennitions, It will be shown that

interest in more general situations than the particular caser fL’ g? yvhereg .has degree, has dimension at least— m¢
BCH codes described here, e.g., [83]. and_m|n|mum distance at Ie_ast+ L. i

To prepare for a definition of Goppa codes, the definition Itis also n_oted thal' (L, g) is @ SUbf'?Id subcodetof the ?Iual
of BCH codes is first recast. With the same notation as abo%,a generalized RS code. To see this,det) = >_;_, giz"-
consider the computation From the fact that

n— z) — g(x .
. . 1 c; M — Z gk+j+1$’]zk
(" = 1) Z P S ki <t—1
i=0
S (z" — 1) 1 it follows that, for any codewordcy, - - -, ¢,_1) we have
= cilz" = 1) ——M——
P ‘ (1 —z ta™") L
iy (a:" — 1) . . Z cih; Z gk+j+1(ai)jzk =0
= Z Ci " {I4zla " +a 2 +.--} i=0 ktj<t—1

q
Il
=

3
|
—
3
|
—

whereh; = 1/g(«;). Since the coefficient of* must be zero
for 0 < k < t—1, it follows that the inner product of the

I
N
O
™
a\‘u
i
Q|
=
L
d

i=0  j= codeword with the rows of the following matrix must be zero:
n—1 n—1
= z’ ci(ad Ty hoge e hp—19¢
=0 =0 ho(gi—1 +gro) -+ hp—1(gi—1 + gr0t—1)
Forj = 0,1,---,d — 2 the inner summation is zero, by

definition. Thus i 4 ! ,
L ho Z gyt o hag <Z gioc;_ll>
=) Y =t @ - -

I . . - .
im0 YT« Using elementary row operations, this is easily reduced to a

parity-check matrix for the codE(L, g) of the form

for some polynomialf(z), i.e., the summation is divisible by

d—1
x . Thus ho hy . Ty 1
n—l hoo hia A Y
C: 00 101 n—10n—1
Z L =0modz?.
o roar : :
= t—1 t—1 t—1
i hoOéO hlal s hn,locTFl
Consequently, a wordco, ¢1, -+, ca—1), ¢ € Fq, is a

codeword iff it satisfies the above equation. The constructitrom which the properties of the code noted above follow

yields either an RS or BCH code depending on the field oéadily. Thus the Goppa cod& L, g) is the dual of a GRS

definition. Notice that the polynomial®* has a zero of order code with vectow = (hg, k1, - -+, hn—1). As the rank of this

2t atx = 0. matrix overF - is exactlyt, the rank ovef, is at mostmt.
The passage from the above definition to that of Gopfddus the dimension of'(L, ¢) is at leastn — mt and the

codes will involve nothing more than replacing the sequencginimum distance is at least+ 1.

of nth roots of unity with an arbitrary set of distinct elements To put the transition to codes from algebraic curves in

and the polynomiak?* with a more general polynomigl(z). perspective, it will be of interest to recast the definition
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of Goppa codes. Consider a polynomial corresponding to a I1l. BASIC THEORY OF ALGEBRAIC GEOMETRY

codeword(cg, ¢1, -+, Cr1)

anddegw(z) < degA(z) = n. Then

¢ = f(@)(@ — a)|e=a,

We introduce the basic notions of algebraic geometry, in
order to extend the construction and properties of codes
discussed in the previous section to algebraic-geometry codes,
to be discussed in the next section. We will give no proofs but
refer to the standard textbooks ([65], [83], [90]). The central
concepts required are limited and the material is illustrated
with examples. It attempts only to convey the central themes
of what is required to appreciate their application to coding.

A. Affine and Projective Varieties

is obtained by canceling the simple pole fitx) at o; and  Definition 3.1: Let F, be the finite field withq elements
evaluating the result at;, i.e., it is the residue off(x) at andF, its algebraic closure. The-dimensional affine space

a;. Let A" is the setA™ = {(ay, -, ay)|a; € F,}.
" An elementP ¢ A" is called anaffine pointand if
H (z — o) = A(z) P = (a4, -, ay) with a; € Fq then the elements; are
i1 i (x — ) called thecoordinatesof the pointP. If G is a subfield of,
that containg=, and P is a point with coordinates i, then
and let P is called aG-rational pointand the set of5-rational points
w(@)  gla)glz) of A™ is denotedA™(G).
f(z) o) = o) On the setA™*1\ {(0, 0, ---, 0)} an equivalence relation
= is given by
since by definitiong(z)|f(x). Note that the residue of (= _
at o cgn be exprggs)eg(ag ) (ao, ==+, an) =(bo, -+, bn) & IX € F, \ {0} sit.
bi:)\ai, i:O,l,---,n
Res,, (f) = M _ g‘“i? a(c) _ -
Az) oma;  Xi(0) The equivalence class @i, a1, - -, a,) is denoted(ao

which is zero only ifg(a:) = 0 as g(cw), xi(ei) # 0 by = )

definition. Thus much as was done for RS codes, define aDefinition 3.2: The n-dimensional projective spade™ is

vector space of rational functiongz), L, such that the set of all equivalence classgo : a1 : - : an)|a; € Fy,
i) f(z) has zeros wherg(z) has zeros, with multiplicity N0t @ll ai = O}. An element = (ag : a; : -~ a,) € P is
called apointand(ao : a1 : - - - : a,) are called homogeneous

at least those ofi(z);
ii) f(z) has poles only contained in the setand in that
case only poles of order one.

Consider the set o&-tuplesC’ over F -~ defined by

coordinates ofP. If G is a subfield ofFF, which contains

F, and P is a point for which there exist homogeneous

coordinatesz, - - -, a, € G is called aG-rational pointand

the set ofG-rational points ofP” is denotedP”(G).

¢’ = {(Resa, f. ReSa, f -+, Resa, . f), f € L} The setH = {(0 : a1 : --- : a,) € P™} is called
the hyperplane at infinityand the points@ € H are the

where the residue of a rational function is defined in the usui@ints at infinity The mappingp: A™ — P \ H defined by

manner. It is seen immediately that the Goppa cb¢B, g) ¢(a1, a2, -~ an) =(l:a1---, : a,) embedsA™ in P". As

is the subfield subcode of this set ovey. a matter of notation¢} will be reserved throughout to denote

The two important perspectives to be drawn from thi@ point at infinity.

section, perspectives that will survive the transition to codesThe one-dimensional projective space, also called the pro-

from algebraic curves intact, are the notions of definingctive line, consists of the pom(sl a1), a1 € F, together

codewords in the first instance, as the evaluation of a ratioNéth the point at infinity(0 : 1) and this set has been used in

function at a fixed set of distinct places, and in the secofi@e previous section for the construction of RS codes.

instance, as the set of residues of a rational function at @A Polynomial f € Fy[x1, z2, ---, 2] can be considered

fixed set of places. In the setting of algebraic geometry, 6 @ mapf: A* — F, defined by

fixed set of places will be drawn from the points on a curve

in an algebraic geometry. The two code constructions, using f(P) = fla, -+, an).

evaluations and residues at this fixed set of places, will carry

over. The determination of code parameters, however, will f/(P) = 0 we call P a zeroof f.

depend in crucial ways on the theory of algebraic curves.More generally, with every” C F,[z1, - -+, z,,] we asso-

The next section will serve as an overview of this theorgijate thezero set off’

in preparation for Section IV which considers classes of codes

that use these notions for their construction. Z(T)={P e A™|f(P)=0for every f € T}.
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Definition 3.3: A subsetV of A" is called aralgebraic set exists elementssy, ---, z;, € F, (V) such thatF, (V) =

if there exists & C F,[z1, -+, x,] such that Fo(z1, z2, -+, z1).
The dimensionof an affine variety is the transcendence

V =2Z(T). degree ofF, (V) over F,,.

Definition 3.4: Let V C A" be an algebraic set. The set Definition 3.9: An affine curvex € A" is a variety of

dimension1.
IV) ={f €Fylx1, -+, ]| f(P) = 0 for everyP € V'} As a matter of notation we will usg to denote a curve in
an algebraic geometry. When it is defined by a polynomial,
is called the ideal ofy". we will denote the polynomial by, or simply ' when the
It is easy to see that/(V) is indeed an ideal of curve is understood.

Fylx1, -+, xx]. The ringF [z1, -+ -, x,,] is Noetherian, that
is, every ideal is finitely generated. An idealwith a single | : )
generating element is called principal and an ideal is primei@l and let us consider the variety

it is not the whole ring and wheneveb < [ thena € [ or PSSO 2 _

b e I. Anideal I is maximal in a set if there is no proper x={F=0y={P e ATC(P) =0}
ideal of A that properly containd.

Example 3.10:Let F € F,[x, y] be an irreducible polyno-

It is clear that the function field,(x) has transcendence
Lemma 3.5. Hilbert Nullstellensatz=very maximal ideal degree one, and therefose is an affine curve and since it

of Fy[x1, -+, x,] is of the form (x; — a1, --+, , — a,) IS contained inA? it is called anaffine plane curve

with a; € F,, i = 1,---,n. For every elementP =

(a1, -+, a,) € A™ the singleton{P} is an algebraic set

with ideal I/(P) = {x1 — a1, -+, T, — ap).

Example 3.11:In the affine plane, we consider the parabola
V with equationY? = X. Here the coordinate rin§ ,(V)
consists of all the expressions of the forir4- By, where A

Definition 3.6: An affine varietyV in A™ is an algebraic and B are inF[z] and y satisfiesy? = z. So,F,(V) is an
set wherel (V) is a prime ideal. The set db-rational points algebraic extension df () by an elemeny, satisfying this
of V is denotedV(G). If I(V) has a set of generators inequation of degree.

G[z1, -, x,] We say thatV is defined overG and denote A point (zg, yo) On a curvey, with equationF(z, y) =0
that V/G. In this case we associate with the variéfyG the is said to benonsingularif the partial derivatives do not both
ideal vanish at the point. Théangent line at a poin{zo, o) is a
linear polynomial(i.e., a polynomial of degree one) described
I(V/6) =1(V) N Bz, -+, &nl. by the equation

Definition 3.7: Let V be an affine variety. The quotient ring t(,, yo)(Z, ¥) = Fu(z0, yo)(& — z0) + Fy (0, 10)(¥ — vo)

Fo[V] =Fylzr, -, 2]/ I(V) where F,(x, y) and F,(x, y) are the partial derivatives of

is called thecoordinate ringof V. F(z, y) with respect tor and y.

If V is defined overG the quotient ring Example 3.12:The curveF(z, y) = y? — = has a tangent
line at the point(z = 1, y = 1), t1 1y(z, y) = —v +2y — 1
G[V] =Glz1, -, zn]/I(V/G) sinceF,(x, y) = —1 andF, (=, y) = 2y. On the other hand, a

singular point occurs on the cund®(z, y) = y? —23+22% —x
at the point(z = 1, y = 0) since both derivative$,. (z, y) =
Remark: The coordinate ring of a variety can be consid- —3z? + 4z — 1 and F,(z, y) = 2y have a common zero at
ered as a set of polynomial functions with value&ipdefined (z = 1, ¥y = 0) [1]. In this case, the curve has two distinct
at every point ofV: let g € F,[V] and G € F,[z1, ---, z,] tangent lines at the singular point.
such thatg = G + I(V). Putg(P) = G(P). This definition
is independent of the choice of the representative if
G € Fylz1, -+, z,), and G + I(V) = G+ I(V) then
G'—G € I(V) and, thereforeQ=(G'-G)(P)=G'(P)-G(P)
henceG’'(P) = G(P). A more general definition of singularity will be given later
Since the ideal (V) of the varietyV is a prime ideal the in the section. In the example abowg — z is nonsingular
coordinate ringF,[V] is a domain. The following definition while y* — 3 + 2z — z is singular. A test for singularity of a
is therefore possible. curve y is the existence, or not, of common zeros in the two
fpartial derivatives.

is called thecoordinate ringof V/G.

Definition 3.13: A curve x is said to benonsingular (or
smoothor regular) if all the points on the curve are nonsin-
gular, otherwise the curve singular.

Definition 3.8: Let V' be an affine variety. The field o
fractions ofF,[V], denotedF (V) is called thefunction field Example 3.14:As an example over a finite field, consider
of V. If V is defined oveiG we define the function field of the Hermitian curvefrom which an important class of codes
V/G, denotedG(V), as the field of fractions oG[V]. will be considered in the next section. These curves will be

It follows from the definition of the function field,(V) used in a sequence of examples in this section. Consider the
that it is a finitely generated extension Bf, that is, there finite field F, whereq = r? = p*™. The Hermitian curve is
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described by the polynomidt(z, y) = 4" +y — " 1. The
curve is nonsingular since the derivatives

Folz,y)=-(r+12"=—-2" (r=p=0inF,

and
Fylz,y)=ry " +1=1

have no roots in commorf{, has no roots).
A monomialof degreed is a polynomial

GEFq[aZO, e ]

of the formG = a - [T« with a # 0 and ¥}, d; = d, and
a polynomial ' is ahomogeneous polynomidl F' is the sum
of monomials of the same degree.

A homogeneous polynomiar € F [z, - -
have azeroat a pointP = (ag : a1 : ---
if F(ao, ar, -+

F(Aag, - -, Aay,) = )\dF(ao, .

L Zp] IS said to
D a,) € PP/E,
, a,) = 0. This makes sense since

'aan)

if F'is homogeneous of degreke
For a polynomialf(x) € F,[x] of degreed, the polynomial
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The function field ofV is defined by

F, (V)= {% g, h € T(V) are forms of the
same degree an # 0}
and
G(V)= {% g, heTly(V/G) are forms of the

same degree and # 0}.
The dimensionof the projective variety” is the transcen-
dence degree df,(V) overF,.
Definition 3.19: A projective curvey C P is a projective
variety of dimensionl.

Example 3.20:Let I € F,[X,Y, Z] be an irreducible
homogeneous polynomial and let us consider the variety

x = {F =0} ={P e P}|F(P) =0}.

It is clear that this is a curve and since it is contained®#
it is called theprojective curve
We clarify the connection between projective and affine

y f(z/y) will be homogeneous of degrek Conversely, one ieties. For a polynomial

can reduce a homogeneous polynomial of degieen =
variables to a (nonhomogeneous) polynomiatinl variables.

More generally, with every setl” of homogeneous
-, n] We associate the zero

polynomials fromF,[xo, z1, - -
set of T’

Z(T)={P e P"|f(P)=0forevery f €T}

Definition 3.15: A subsetl” of P is called a projective al-
gebraic set if there exists a sEtof homogeneous polynomialssponding ideall (V) C F[x1, --

such that

V= 2(T).

F=F(xy, -, Zn) EFq[azl, Cey T

of degreed set

F* =y F(a1 /o, -+, &n/x0) € Folwo, -+, 2]

then F* is a homogeneous polynomial of degréén n + 1
variables.

Consider now an affine variety’ € A™ and the corre-
-, z,]. Define the projective
variety V. P" as follows:

V= (PP (P) =0 forall F € I(V)).

Definition 3.16: Let V' C P be a projective algebraic This variety is called therojective closureof V.

set. The ideal inF,[zo, - -
homogeneous polynomials with F'(P) = 0 for everyP € V
is called the ideal oV and is denoted (V).

Definition 3.17: A projective varietyy” in P™ is a projective
algebraic set such thd{}') is a prime ideal.

The set ofG-rational points ofV is denotedV (G). If I(V)
has a set of homogeneous polynomials fr@fx,, - - -, z,]

-, 2] which is generated by all

On the other hand, le¢ c P" be a projective variety and
suppose that

W=Vn{lco: - :¢c) €Pco#0}#0.
Define ¢: A — P™ by

olag, ar, -, ap) =1 :ay -, ay).

as generators we say thitis defined overs and denote that Then

V/G. In this case we associate witty G the ideal

I(V/G)=1(V) N Glzo, ---

7 xn]-

Definition 3.18: Let V' C P™ be a nonempty projective

variety. The quotient ring

Lrh(V) =Fylzo, -5 2]/ 1(V)

is called the homogeneous coordinate rindg’oif V is defined
over G thenl'),(V/G) = Gz, - -+, x,]/LI(V/G).
An elementf € I[,(V) is said to be dorm of degreed

if f=F+1I(V) whereF is a homogeneous polynomial ofcurve has the equatiogi z + yz" —

degreed.

V=¢ (W)
is an affine variety and

IWVy={F1:zq:---

san)|F e I(V)}

and the projective closure df is V.

If V is an affine variety and’ its projective closure, the
function fieldsF,(V) andF,(V) are isomorphic and’ and
V have the same dimension.

Example 3.21:The projective closure of the Hermitian
2"+ = 0 and this curve
has only one point at infinity, namel§o : 1 : 0).
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B. The Local Ring at a Point A function satisfying the first five of these is callediacrete
Let V be a variety andP € V. If f € F (V) then valuationand the ringoO adiscrgte valuation. ring . .

£ = g/hwith g, h € F,[V] for an affine variety and = g/h We _W|II now connect th_e points of a variety with dl_sc_rgte

with g, h € T (v) for a projective variety. If there exists avaluat|or_1 rings _of its function field. A_more general deﬂmpon

representative off = g/h and h(P) # 0, f is said to be of the singularity of a curve or variety than the one given

definedat P. earlier, follows:
The ring Op(V) = {f € Fy(V)|f is defined atP} is  Definition 3.26: Let V be a variety andI(V) = (G,

called thelocal ring at P. Ga, -+, G,). Let P be a point of/” and consider the matrix
The evaluation of an element € Op(V) is defined as

f(P) = g(P)/h(P) in the affine case and in the projective Jv,p ={ai}

case letg = G+ I(V), h = H+1(V) € I(V) where

G and H are homogeneous polynomials of degréelet

P=(ag:a:--:a,). Since aij = (0G; )0z ;)(P)

G(Aao, -+, Aap)  MG(ag, -+, a,)  Glag, -+, a,) fori=1,---,s5,andj = 1,---,n (affine case) orj =
H(\ag, -+, A\an)  MNH(ag, -+, a,) H(ag, -, a,) 0,1,---, n (projective case).
P is called nonsingularif

we can put
rank Jy, p =n—dim V

PIGCL,~~~,CLn Hav"'aan . . . . . o
/(P) (a0 J/H (a0 ) and singular otherwise. The variety” is called singular if it

it H(P) # 0. has at least one singular point aredular otherwise.
Op(V) is indeed a local ring, its maximal ideal is Theorem 3.27:Let x be a curve (projective or affine) and
P a point of x. P is nonsingular if and only ilOp(y) is a
Mp(V) = 1S € Op(V)|/(P) = 0}, discrete valuation ring.

If the variety is defined ovefs one can also consider the
function fieldG (V). The definitions and the theorems still hold
when one exchangds, and G. If v is a discrete valuation

__ Definition 3.22: A valuation ring of the function field
F,(V) is a ring O with the properties

* Fp O C Ry (V). of G(V) with valuation ringO and maximal ideaf® then the

* Foranyz € Fy(V), 2 € O,0orz7* € O. pair (O, P) is called aclosed poinbf V andd = [O/P: G] is

Theorem 3.23:Let O be a valuation ring of the function called the degree of the point.& = F, then the closed points
field F,(V). Then correspond to the nonsingular points .and all have degree 1.

* O is a local ring and has as unique maximal ideal Let 7 denote the set of closed points of the cutve

P =0\0" whereO* = {z € O|Fw € O: 2w = 1}. Example 3.28:We will consider the projective plane curve
cFor0#zeF,(V),zeP&at¢O. x With equation zy? + y22 = 2® over the fieldF,. In
e P is a principal ideal. QQ=(0:1:1), we can take = z/~ as a local parameter.

* If P = tO then any0 # » € I’ has a unique rep- Let f = z/(y + z). We will determinevg(f). We have

resentation of the form = ™« for somen € Z, « € O*. 5 ) )
* Ois a principal ideal domain. P=tO and{0}#1 C O ro__* _A Y _ A 2y

is an ideal thenl = +*O for somen € N. y+z zy+a’z 2y+a’z 2 oz

Definition 3.24: Let O be a valuation ring of, (V) and and the second factor is a unit D (x) sovg(f) = —2.
P its unique maximal ideal witlP = tO. Thenz € F (V)
has a unique representation= t"« with « € O*, n € Z. We C. Divisors, the Vector Spacg(G), and the Theorem of
definevp(z) = n andvp(0) = oo. Riemann—Roch

Observe that this definition does not depend on the choice gt x be a regular projective curve defined ovEy. A
of generatort of 7. divisor of y is a formal sum

Theorem 3.25:The functionv: F (V) — Z U {oc} satisfies D= Z npP

cwvplz) =co 2 =0 Pex

o vp(xy) = vp(x) + vp(y) o

e vp(z + y) > min{rp(z), vp(y)} with equality if Wherenp € Z and all but finitely manynp's are zero. The
vp(x) # vp(y degreeof D is

e Iz stwp(z) =1 o )

e vp(a) =0 forany0 # a € F, degD—andegP.

e P ={ze F,(V)|vp(z) > 0} Pcx

« O={ze F,(Vvp(z) > 0} The divisors ofy form an additive groupD(y), the divisor

* 0" = {z e Fo(V)|vp(z) = 0} group of .
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Let f € Fy(x). Theorder of f at a pointP € x is defined In the same way as we have definéd) for functions
to bevp(f) wherevp is the discrete valuation correspondingve now define the vector spaé&G) with zeros and poles
to the valuation ringDp(x). If vp(f) > 0, f is said to have prescribed byG as

azeroat P, and if vp(f) < 0, f is said to have gole at _ _
P. The principal divisor(f) of an elemend # f € F (x) is UG) ={w € Jw=00r(w) 2 G}.

defined asy_ ., vp(f)P, and thezero divisorof (f) is One could have defined the genus as the dimension of the
vector space of differentials without poles, that is,{&fO),
(fo= > w(H)P whereO is the divisor with coefficien® at every closed point.
vp(£)>0 The dimension of2(G) is called theindex of specialityof G

and thepole divisorof f is and is denoted by(G).

Theorem 3.30. Riemann—Rockor a divisorG of a curve

(Pos=— >_ vp(f)P. of genusg

vp(f)<0
(G) =deg(G) +1—g+i(G).

Furthermorei(G) = (K —@G) for all divisorsG and canonical
- > weHP= > wve(H)P. divisors K.
vep(£)<0 ve(f)>0 Moreover it is a consequence of the Riemann—Roch theorem
that

Theorem 3.31:For any divisorG with deg (G) > 2g — 2,
l(G) =deg(G)+1—g.

The degree of a principal divisor is zero which gives that

On D(x) we define a partial order by

D1: Z mPPSD2

Pep,
= Z npP & mp < np, for all P € y. Let w be a differential. IfP is a closed point of degree
= and« is a local parameter aP, then there exists a rational
function f such thatv = fdu. This function f has a formal
Definition 3.29: If G € D(x) let Laurent serieszfip a;u’, where the coefficients; € Fym
andp = vp(w) and ap # 0. The residue ofw at P is by
L(G) ={f e F,00l(f) + Gz 0} U {0} definition Tr (a_;) and is denoted byResp(w), whereTr is

e trace map fronf ~ to IF,.

. . . t
be the set of rational functions with poles only at the zeros or} The residue theorenstates that for € O
X

the divisorG and have zeros at the poles Gf
Notice that the divisor of a product of two functions is Z Resp(w) = 0.
the sum of the respective divisorsf - h) = (f) + (h), and PEP,
the divisor of the sum of two function§f + h) satisfies
(f 4+ h) = min{(f), (h)}, i.e., the minimum coefficient is
chosen, point by pointL(G) is a finite-dimensional vector
space oveF, its dimension is denoteld(). The Theorem of pole number if(nP) > I((n—1)P). Moreover, the set of pole
Riemannsays that there exists a nonnegative integesuch numbers form an additive semigroup Since(Ji )o. = n1 P

that for every divisorG of x and (fa)eo = 2P then (f1 - fa)eo = (n1 + n2)P.
UG) 2z deg(G)+1-m Theorem 3.32:Supposey > 0 and P is a closed point of

ﬁisegree one. Then there are exagtlgap numberg; < is <
- <igof Pandi =1 andi, < 29— 1.

Let P’ be a point of degree one. An integee> 0 is called a
pole numberof P iff there exists anf € F,(x) with (f)ec =
nP. Otherwisep is called agap numbef P. Clearly,n is a

and the smallest nonnegative integer with this property
called thegenusand is denoted by(x) or g.

In order to determiné(G) one needs the so-callddiffer- An important case from the perspective of algebraic-
entials We can think of differentials as objects of the fornyeometry codes is when the curye is nonsingular and
fdh where f and h are rational functions, i.e., elements ointersects the line at infinity in a single poinf say. In
F,(x), such that the map which senligo dh is aderivation this case the elements @ = (J-_, L(mQ) has a simple
A derivation is F-linear and thelLeibnitz rule d(h1h2) = description, since the rational functionX = z/z and
hidhy + hadh, holds. We denote the set of differentials gn Y = 4/~ represent a monomial generating set far
by €2,.. One can talk about zeros and poles of differentials. At
every closed poin® there exists docal parameterthat is, a
function « such thatvp(u) = 1, and for every differential
there exists a functiorf such thatw = fdu. The valuation

Example 3.33:Consider the Hermitian curve with equation
2"t = y" + y over the fieldF,-. Here@ = (0 : 1 : 0) and
X =2x/z, Y = y/z is a monomial generating set for

vp(w) is now by definitionyp(f), so we say thatv has a >
zero of orderp if p = vp(f) > 0 andw has a pole of order R= U L(mQ).
pif p = —vp(f) > 0. The divisor ofw is by definition m=0

(w) = Y vp(w)P. The divisor of a differential is called It is obvious that the set6X'Y7|0 < i < 7} and{X"Y7|0 <
canonicaland always has degrey — 2. ¢ < r 4 1} each describes bases ffr
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TABLE |
GAPs FOR THE HERMITIAN CURVE AT THE POINT @

q r | Number | genus
(=12 of points | ¢ gaps

4 |2 9 1 {1}

9 |3 28 3 {1,2,5}

16 4 65 6 {1,2,3,6,7,11}

25 5 126 10 {1, 2,3,4,7,8,9,13, 14, 19}

64 8 513 23 {1, 2,3,4,5,6,7,10,11,12,13, 14, 15,19,

20,21, 22,23, 28,29, 30, 31, 37, 38, 39, 46, 47, 55}

The notion of gaps and the genus of the curve are closelyDefinition 3.36: The zeta function ofy is defined as
related in this situation. As before, 1&f = z/z andY = y/z
and letox > 0 andoy > 0 be the pole orders ap of these
two functions. The semigroup of gaps is then generatedxby
andoy, so the genus of the curve is the number of elements in
IN that are not of the formiox + joy, 4, 7 € N. For example, = The zeta function contains information about the number
if ox =3 andoy = 4 then the gaps ar¢l, 2, 5}, which in  of points in various extensions d@f,. It has the following
turn implies that there are no rational functions on the curygoperty.
with these pole orders abp.

t’nl

Z(t) = exp Z Ny, ot
m=1

Theorem 3.37. Hasse—Weil:et ¢ be the genus of. Then
Example 3.34:As an example, the Hermitian curve over

F,, ¢ = 72 is regular and has genus= r(r — 1)/2. The Z(t) = P(t)

order of X and Y is » and r + 1, respectively. To see (1-t)(1—qt)

this first consider the function = (x/z). The equation

z = 0 describes a line in the plane. The intersection with théhere

Hermitian curve, described by 'z + yz" — z"1, are single 2g

points of the form(0 : 5 : 1) where3" + 3 = 0. There are P(t) € Z[t], P(t) = H (1— ast)

exactlyr solutions forj3 € F,. These are the simple zeros of

the functionXX over the curve. Thus we conclude th¥thas

r zeros, and thus poles at the point) and so the degree where

of X is ox = r. In the case oY’ = y/z, the zeros in the

plane correspond to the ling = 0, intersects the Hermitian o; € C, low| = /g, dviczgri-i =q

curve at the single point0 : 0 : 1). However, the order

of this single root isr 4+ 1. This implies that the pole orderand

at @, and thus the degree df on the curve, is equal to 2

oy = 7+ 1. Table | shows some of these results for small Nyp=q¢"4+1— Z ol

values ofr. The discussion can be cast more algebraically by =

saying that at) = (0 : 1 : 0), the semigroupS of pole

numbers are generated by the divise€s and (r + 1)@, that and theq; are complex algebraic integers.

is, S = {ar + b(r + 1)|a, b € Ng}, and it can be seen that The proof of |a;| = /7 is difficult. It is an analog of

(2/2)0o = 7Q and (y/2)s = (r + 1)Q which implies that the Riemann hypothesis for curves over finite fields and was

L(mQ) has the function§(z/2)*(y/z)%|ar + b(r +1) < m} proved by Weil. It has as a consequence the Hasse—-Weil bound.

as a basis. The above computation of the genus of the curver

noted above, follows from this basis.

Example 3.35:We can directly calculate the dimension of |Nm — (14 ¢™)| < 29/
L(a@). We get

=1

orollary 3.38. The Hasse—Weil Bound:

1, a=0 Example 3.39:The Hermitian curve considered in Example
dim (L(aQ)) = { l1+a—-ma), 0<a<2g 3.34 hasl + r? + r(r — 1)r = v + 1 points of degree one
a—g+1, 29 < a overF, soN; = 1+ q+2g,/q and is therefore optimal with

respect to the Hasse—Weil bound. To calculate the number of

points we first note thaf0 : 1 : 0) is the only point with

z=0.If z=1 we havez"™t! = 4" + y. The right-hand side

is the trace function fronf,: to F,. so from each of the

values ofy, wherey” 4+ y = 0 we get one solution and from
Let x be a regular curve defined ovE, and letV,, be the ther? — r values ofy wherey” 4+ y # 0 we getr + 1 z’s.

number of points ory of degree one oveF ;. This givesr + (r + 1)(7? — ) + 1 points, that isy> + 1.

wherem(a) = |{i|iis a gap ¢ < a}|. Note thatm(a) = ¢
for a > 2g.

D. Counting Points on Curves
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E. Algebraic-Geometry Codes possible to show [97] that there exists a rational differential

The two code constructions at the end of Section II, of@'m w With simple poles and with residue at the points

consisting of evaluating rational functions at a sequence bf ¢ = 1,2 -+, n S0 that

points, such as the case for RS codes and polynomial functions, C*(D,G)=C(D, K+ D —-G)

the other evaluating residues of rational functions at a sequence

of points, such as for Goppa codes, will be emulated for tigth K the divisor ofw. This implies that the residue con-
case when the sequence of points is obtained from curvesStriction gives exactly the same class of codes as the first

an algebraic geometry. construction. It is nonetheless useful to retain the two ap-
In the first instance, let be a nonsingular projective curveProaches to code construction.
overF, of genusg and letP;, P, ---, P, be rational points The next section considers some particular classes of curves

onyandD = P, + P, + --- + P,, a divisor. Let@ be a @and constructions of codes by the methods given here.
divisor with support disjoint fromJ> as noted, and assume

that 2g — 2 < deg (G) < n. IV. CLASSES OFALGEBRAIC-GEOMETRY
Define the linear cod€’(D, G) over F, as the image of CODES AND THEIR PROPERTIES
the linear map The previous section has established constructions of codes
a L(G) — Fy from algebraic curves as a natural evolution from RS and
Fe— (f(P)), f(P2), -+, f(P) Goppa codes. Some classes of codes of particular interest that

arise from these constructions applied to specific classes of

where _ curves are considered here. As a matter of notationyley)
L(G) ={f e F(O)(f) + G > 0} U {0} be the maximum number of points possible on a curve of genus
whereF,(x) is the function field of the curvg and g overF,. As in the previous section, for a specific curve we
will denote the number of rational points of the curve over
(f) = Zordp(f)P' F¢~ by V,., where the genus and field sizeare understood.
IS

The parameters of the code are established by using K]eCodes from the Klein Quartic

properties discussed in the previous section. The kernel of the

map is the sefL(G — D) and The homogeneous curve
k =dimC(D, G) = dim L(G) — dim L(G — D) Py+yPr+2Pr=0
=deg(G) —g+1 is referred to as the Klein quartic [83] which can be considered
since dim (L(G — D)) = 0 if degGG < n. The minimum over any field. Interest in this curve will often be for fields of
distance follows from the following theorem. characteristic two. Since the curve is nonsingular of degree
Theorem 3.40:The minimum distanced of the code d = 4 over fields of characteristic not equal fo(and the

o(D, @) satisfies curve is singular in that case), the genus of the curve is, by
’ the Plicker formula

d>d* =n—deg(Q). 1

Proof: F' € L(G) has at mostleg (G) zeros. O 9= §(d - Dd-2)=3.
Thus the designed minimum distance®@fD, G) is within ~ Consider the number of points on such a curve over a field of
g of the Singleton bound. characteristi@. It can be seen from the zeta function in Section

To emulate the residue construction of the classical Gopph that to determine the number of points on the curve over
codes, choos€& and D as in the previous construction andany extension field, it is sufficient to determine the number of
recall that for a divisorD € D(x) of the curvey points overFs-, r = 1, 2, 3.

. OverF, the homogeneous equation has the three solutions
QD) = Q|d >DluUo
(D) = {w € Qdiv(w) = D} Po=(1:0:0),P =(:1:0),andP, = (0:0:1).

wheref(! is the set of differentials. Define the map To determine the number of points oves. argue as follows.

o QUG - D) —Fy For z # 0 convert the equation to projective coordinates and
w — (Resp, (w), Resp, (w), ---, Resp, (w)). defineu = z/z, v = y/z to give

The codeC*(D, G) is defined as the image undet. Again, wv 1?4+ u=0.

from the properties developed in the previous section, %ﬁnsider solutions of the for(d, v, 1), A, # € F=,

4= 1{0,1, @, &} wherea? + a +1 = 0. For a fixed
8 € F}, the equation reduces to

particular as a consequence of the Riemann—Roch theor
it is straightforward to establish that

dim (C*(D, G))=n —deg(G)+g—1
d* >deg(G) —2¢g+2
again withing of the Singleton bound. If 3 =1, the polynomial is irreducible ovdf, and there are

It follows from the Residue theorem that the codd9, G) no solutions. For? = «, there is one solutiofia, %, 1) and
and C*(D, G) are duals of each other. Furthermore, it ifor 3 = o the single solution ia?, «, 1) giving Ny = 5.

W4+ pg=0.
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To obtain the points oveF,: = {0, 1, a, a2, -+, a®}  In homogeneous coordinates, the point at infinityjis= (0 :
wherea® + o+ 1 = 0, « primitive, it is readily checked that 1 : 0). If the coordinates are i, the elliptic curveE(K)
is said to be overx.
For any such curve, it is possible to define an addition of
and points by observing that the straight line through any two
oo: (x, y, 2) — (2, z, y) points P;, P> intersects the curve in a unique third poifs.
The “addition” of P, and P is then defined a€® P; whered
are automorphisms of the set of points, of order7 ando>  represents addition of points on the curve. Such an addition of
of order3. The pointF = (1, &, o*) is a solution as are  points is easy to appreciate over the reals and all the geometric
i . . notions involved have straightforward analogs over a finite
By =003l i=0.1,--,6,j=0,1,2 field. Thus the points of thg elliptic curve ogﬁq, E(F,),
These 21 points plus the original three points yidlg = 24. have the structure of an Abelian group under this operation

The numerator of the zeta function for the Klein quartic |Qf point addition. This structure is the basis of eIIiptiC curve
then obtained as cryptosystems [53], [62] which has generated further interest

in the subject, with its deep results and important connections
Py(t) = 14 5t° + 8t° to number theory and other areas of mathematics [81].

In terms of the coefficients in (1) [62, p. 19], two fundamen-
tal quantities for the curve can be defined, the discriminant
2(t) = 1+ 5t° 4 8¢° ' A, and thej-invariant j(E). The curve is nonsingular iff

(1-1t)(1—2¢t) A # 0 and, if two curves are isomorphic they have the same
The number of points on the curve oveh:, N, is the ‘?'-invarian_t. Elliptic curves are yvell classified in terms of their
isomorphism classes and their group structure [81] but such

coefficient of¢! in the series expansion ¢f(t). : C o . ; e
Codes of differing lengths can be defined with the Kleihnformatlon is more than is required for our objectives.
Let P, P, ---, P, be rational points of the elliptic curve

quartic. Following the work of Hansen [39], define a set of . s . -~
codes of lengtl21 overFg. Using the evaluation constructionand @ the point at infinity. Choose the divisdb as D =

: . L= - L P+ P+ ---, P, and asG = m( for some positive integer
\c/)vfit;hzi;ﬁxloﬁp;i(r:tuony defin® = >_ Fi; and the divisor m. The codeC(D, G) over F, obtained has the parameters

(n, m,d > n—m) and

In—(g+ D] < [2v4].

The code is defined by the mapping
a: L(@) L2 Almost all of these codes will have a minimum distance of
) 8 d = n — m falling short of the Singleton bound by one.
fr—=(f(Py), i=0,1,2,---,6, 7=0,1,2.  van der Geer [94, p. 32] gives an example, credited to R.

Using the results of previous sections it can be shown thé&llikaan, where &6, 3, 4) code overF, obtained from an

dimension of L(G) over Fs is 3m — 2 and the minimum €lliptic curve, is actually an MDS code.
distance of the code i$21 — 3m. The codes have the [N the case whewti = mQ, itis known [14] thatL(mQ)
has a basis of the polynomials

o1: (z, y, 2) — (az, oy, o®2)

and the zeta function is

GIm(Po—i-Pl—i-PQ), 2§m§6

parameters

(21, 3m — 2, >21 —3m), 2<m<6 (1,2, 2% -, 2%y yz, o, yzd)
and in fact the lower bound on the minimum distance is 5= LTJ 5= {m__QJ
achieved for all values ofz in the range shown. 2 2

In a similar fashion, define a code of lengh by choosing ) ) ) R
G = 10P, and D the sum of the other 23 points. In this casd? give a code dimension éf-6+2 = [m/2]+|(m—2)/2]+2
the code has the parameters= 23, k = 8, d = 13. which ism +1 if m is even andn if m is odd. The minimum

distance of the code is8 — m.
To determine the number of points on the curve dvgr, it

o i ) _ Is sufficient to determine the number of points ofgr, since
An elliptic curve in homogeneous coordinates over a fielgha cyrves are of genus Thus ift = ¢+ 1 — | E(F,)| then
K (more formally taken to be the algebraic closukg is !

irreducible and of the form |E(F )| = F+1—aoF—pF

B. Codes from Elliptic and Hyperelliptic Curves

2 3

3 2 2
=W Gputw o agu” + dew” — wherea and 3 are solutions of the equatiot? — tz 4+ ¢ = 0.

a; € K. The weight enumerator of MDS codes is uniquely specified
by the code parameters. Since for (most) codes from elliptic
curves,d = n — k, it is not surprising that some information
is available for such codes. The subject has been considered
v +azy+asy = 22+ asx? +agr+ag, a; € K. (1) by Katsman and Tsfasman, [50] (and in the book [90]). Define

ww + aiuvw + azvw

All such curves are of genus. Making the transformation
x = uw/w, y = v/w yields
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the weight enumerator of such a co@eby andN4(2) = 10, Ny(2) = 20. If ¢ is an odd power of a prime
. p call ¢ special ifp||2,/g] or if there is an integel such that
. __ 72 __ 72 H H
Welz) = Z A, g=1+1+10org=10°+1+2. If ¢gis not special then
or = Ny(2) =g+ 1+2[2v4]
n—d . . .
4 ‘ and if ¢ is special then
We(z, y) =" +y* Z Agyiy'a" .
i=0 N (2): {Q+2|_2\/§Jv if {2\/§}> (\/5_1)/2
g g+2(2y7) — 1, if {27} < (V5 1)/2

and, by the MacWilliams identities,
N where {2,/q} = 2,/q — |2,/q], the fractional part.
Werl(z, y) = ¢ "Welz + (g — Dy, z — ). For N,(3) specific results are available. Thus [30] for
_ ) ) 3 < g €19, Ny(3) = 2¢ + 6 except forg = 8, 9 where
By applying these relationships to the case of(ank, d = N,(3) = 4q — 8. Tables for such functions foy < 25 are
n — k) code, it is found that [90, p. 302] given ([2], [90]).
h1 As a generalization of elliptic curves, consider the hyperel-
Welz) = 2™ + Z <7z>(qkz — 1)(z — 1) + By(x — 1)k, liptic curves, defined by an equation of the form
1=0

X:y? + h(z)y = k(x), h(z), k(z) € K[z]

It is kno.wn that B/ _, = By, where the prime |nd|cateswhere h(z) is a polynomial of degree at mogt and &(x)
weights in the dual code. For = 2k, Wo(z) = We (“7)_ is monic of degree exactlgg + 1. We require the curve to
and the codes are f_ormally_ self-dual. B, = 0 the code is be nonsingular, i.e., have no singular poirits y) € K2
MDS. In general, it is possible to show that where both of the partial derivative®y + h(z) = 0 and
n Wy — k'(z) = 0 vanish. In such a case the genus of the
0<By=58,_; < <k>(q -1, d=n-k curve isg. Notice that for elliptic curvesh(z) is at most a
linear polynomial and:(x) a monic cubic, and the curve is
and the determination oB;, uniquely specifies the weight of genus1.
enumerator of the code and hence of its dual. It is possiblelf char (K) # 2 then the change of variables
to characterizéB;, as(q — 1) M whereM is an integer with a

. I A — (h(z)/2
combinatorial interpretation in terms of curve parameters [90, Tz, y ey = (M2)/2)

p. 303] but this is beyond our interests. transforms the equation to
Recent authors ([9], [21]) have defined the defect of an )
(n, k,d=n—k+1—6) code to bes > 0, i.e., the amount y* = f(z)  degf(z) =29+ 1.

by which the minimum distance of the code fails to meet tI’m this case ifP —
Singleton bound. COd.eS with def?(zt.: 1 which includes x, —y— h(z)) is also a point on the curve, the sum (addition
most of the codes derived from elliptic curves, are referred

. I -MDS codes. Further structural | points on the curved) of P and the point at infinity.
as quasi- or aimost- coges. FUrther structural propertigS..r (k) = 2 and(z, ») is on the curve, then so also is
of such curves can be established.

Clearly, curves with small genus and large numbers , y+h(x)). In homogeneous coordinates the point at infinity

) : . ) IS (0 : 1 : 0) and has multiplicity2g — 1. The number of
points are of interest in const'ructmg codes. The quantifyi - points on the curvé¥ is bounded by
N,(g), the largest number of points ovEy, for any curve of
genusg, has been studied by several authors (e.g., [16], [58]) IN —(g+ 1) £ g2/4q].
and the results find implications in coding theory. These refine- ] o )
ments of the Hasse—Weil bound (and the Serre improvemehf}e following example [53], [94, p. 61], is instructive. Con-
are briefly discussed for curves of small genus. sider the curve
Fo_r curves of genus one, lgt= p°, p = char (F,). Th_e P ry=a°+1
maximum number of points of a genus one curve then is

(z, y) is a point on the curve, then

of genus2 over F,. It can be shown using the techniques
Ny(1) =g+ 1+ [2y/q] established previously that the number of points on this curve

) ] ] ) overFy. is 2¥ 4+ 1 unlessk = 4m in which case it is
unlessp||2,/q] ande is an odd integer, in which case

No(1) = g+ [2V/4]. . . i
) 2V One can use either of the code constructions for hyperelliptic
The case of genug is a little more complicated but, curves to obtain codes. Continuing the previous example [94,
interestingly, a complete answer is still possible [78]glis P- 61], overF2s the curve has 33 points. LeD be the sum

an even power of a prime; # 4, 9, then of the points not at infinity and? = mQ, @ the point at
infinity. For the codeC*(D, G) one obtains a sequence of

N, (2)=qg+1+4/q codes(32, k = 33 — m, d,,) overFig with d,,, = m — 2 for

24771, + 1 + (_1)771,—1—122771,—1—2.
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3<m <31, m#3,5, d3 =2, d;s = 4. The general question dim (C,,) = n = ¢>. Thus the interesting range fon is
of the maximum length possible for a code ofgy froma 0<m < ¢ +¢* —q—2.

curve of genus either one or two is examined in [6] and [66]. It is first noted that the dual code 1G,, is

ct=cC

C. Codes from Hermitian Curves P +q2—g—2—m

The Hermitian curve in homogeneous coordinates is giveind henceC,, is self-orthogonal if2m < ¢ + ¢ — ¢ — 2
by and self-dual iffm = (¢® + ¢*> — ¢ — 2)/2, a case that is only
WL ot H fatl — possibl_e ifq_ = 2% for some positive integek. The dimension
of C,, is given by the cases
over -, a special case of the Fermat curve

dim (C,) =
" o™ ™ =0 m+1—(¢¢—q)/2, ifg?—g—2<m<g®
v(m), fo<m<¢g®—q-—2

for (m, ¢) = 1. The Hermitian curve is nonsingular and
its genus is given by = ¢(q¢ — 1)/2. It will be shown
constructively that the number of rational points on the curvghe minimum distance o€, satisfies
is given byq® + 1 and since, by the Hasse-Weil theorem

N, <@ +1+29V@ =¢>+1

C-v@E+@F —qg—2-m), ifm>dg.

d>q¢>—m.

. . _ It can be shown thad = ¢®> — m when
all such curves are maximal. In projective coordinates the

curve is written F—qg<r<¢® - +aq
+1 +1 _
uwf T =1 Finally, it is noted [83] that the automorphism group@f,
Choose [30, p. 1558}, § € F,. so that is quite large. As before, let, 3 be such that
L] . ? q

A4y =0T = 1 B4 8=ttt a, BEF .

which is always possible (note that the left side is the trad®r each of they? values ofc there are exactly values of/3
overF, and§7*! € F,). Make the transformations satisfying the equation. Farc F - \ {0} it is verified that if
(z, y) is a point on the curve then so (s(z), o(y)) where

1
T = andy = bux —
v — ou v i olz)=ex+6 o(y) = ey + 6% + p.

ield th i . .
to yield the equation Thus the automorphism group of the code contains a subgroup

y? 4y = zath of size ¢*(¢> — 1). More recently it has been shown by Xing
. _ o [107] that, forg+ 1 < m < ¢* + ¢* — 2q — 3, this is in fact,
The common pole of andy is the point at infinity. precisely the automorphism group. For eitlleg m < g — 1

To describe the® rational points on the curve [83, p. 203]y, ,,, > P21
in slightly more detail than previously (Example 3.39), note N

that for eachn € F - there existsy distinct elementg; € - Aut (Cp,) = Sys
such that
the symmetric group on® letters. For the two cases of = ¢
Tr(B) =B+ p=a"t €F, orm = ¢+ ¢% — 2q — 2 the group is slightly more complex,

and theg® solutions are(a, f3). of the form

To form a code of lengtm = ¢ over F ., take D as the Aut (Cr) 2 AGL (2, ¢?) @ S¢°
sum of theg? rational points and? = m( for a positive ’ ¢
integerm. It can be shown [83] that the elements where AGL(2, ¢?) is the affine linear transformation of a line

over F, and ng is a copy of theg? symmetric groups,.
Notice that in the casen = ¢, dim(C,,) = 2 and C,, is
forms a basis of.(mQ). The above monomials can be use@enerated by the all-ones vector and

to construct a generator matrix of the cadéD, mQ) = C,,,.

{z'y7,i>0,0<j <g—1andig+j(g+1) <m}

To determine the code parameters, define (1, ooy @1, Ty ey By oo, g2, o Tg)
Am)={0<I1<mli, j € Z I =iqg+ j(qg+1), from which the result follows. The case for = ¢+¢>—2¢—2
i>0,0<j<q—1} follows from _d_uallty. _ _

The Hermitian codes clearly have interesting structure.
and lety(m) = |A(m)]|. Given their monomial basis of the formiy’ with restrictions

To determine the dimension of the codé,, note that on the size ot andj, it is not surprising they can be expressed
for m > 0, C,, is empty, and form > ¢*> + ¢> — ¢ — 2, as catenated versions of generalized RS codes [105].
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D. Other Constructions then F[z, y]/I has a basis

Feng and Rao [22], [_24]_introduced_two classes of co_des, in {z°y°l0< a < a, or B <cbh.
some sense a generalization of previous classes, but in terms
of methods used to establish their properties, quite novel.lAthis case, an order function may not exist but when it does
brief introduction to their definition is given here. The twdt must have the property tha{z®) = p(z*).

classes are given by Using the notion of an order function, codes of Types | and
. II, as evaluation codes, can be defined and bounds on their
Type Lz® +y" + Gz, y) =0 minimum distance established. Readers are referred to [44]

for details on this approach.
wheredeg (G) < b < a, ged (a, b) = 1, and ' 'S app

Type Il: z%° + 4" + G(z, y) = 0 V. DECODING OF ALGEBRAIC-GEOMETRY CODES

) ) The decoding problem can be formulated as follows:
where deg (G) < min(a + ¢, b + ¢), ged(a, b) = 1. This
last type of curve is a generalization of the Klein curves with Definition 5.1: Let C' be an(n, k)-code over the field~,
equation:z™y + y™z + 2™z = 0. The curves of Type | are and0 < 7 < n. The functiondec,: Fy; — P(C), P(C) the
always irreducible and have exactly one point at infinity whichower set onC, where for anyy € F
is regular iffa = b+ 1. The properties of the evaluation codes
derived from these curves depends very much on the form of dec-(y) =Sy, 7) 0 €
the polynomialsG(z, y) and the method used for the codgs called adecodemwith capability of correcting- errors. Here
construction. Feng and Rao use the notion of a well-behavigg, ) is the sphere with radius centered ay.
sequence of monomials for the code construction. Hgholdtwith this definition the following lemma is immediate.
et al. [44] analyze the properties of the codes using the notion ) )
of an order function. This approach is briefly described here.-€mma 5.2:Let C be an(n, k)-code over the field , with
Let < be an admissible order function on monomials an@inimum distanced and let= |(d — 1)/2]. Then for any
fi < fiz1. Every polynomialf € R, R an F-algebra, can ¥ € Fi |deci(y)] < 1.
be written in a unique manner as Proof: Supposer;, ¢; € S(y, t). Then

J d(clch)Sd(cv y)‘i‘d(cQ,y)St—f—tSd—l
fIZC)é7f7, a; € F, 0417&0
i=1

S0¢; = €. O

Most of the work in the constructions of decoders for
algebraic-geometry codes has been focused on designing
Plecoders witht = | (d*—1)/2] whered* is some lower bound,
e.g., the ones presented in Section IlI-E, on the minimum
distance of the code, but recently Shokrollahi and Wassermann

Define the mapping(.) from F[zy, ---, z,,] t0 Ng U {—oc}
by p(0) = —co andp(f) =j — 1 if j is the smallest positive
integer for whichf can be written as a linear combination o
the firstj monomials. The functiop(. ) satisfies the following

conglltlons. ] [80] have constructedec,-decoders for larger by extending
) p(f) = - iff f=0; previous work of Sudan [88], who constructed such decoders
i) p(Af) = p(f) for all nonzeroA € F; _ for Reed-Solomon codes. For a survey on the decoding of
i) p(f +9) < max{p(f), p(g)} with equality when gzigepraic-geometry codes and the history see Hgholdt and
) < plg); Pellikaan [45].
v) if p(f) < p(g) andh # 0 thenp(fh) < p(gh); In this section we will describe a decoding algorithm for
v) if p(f) = p(g), then there exists\ € F* such that algebraic-geometry codes of the form

o(f = Ag) < plg)
and any function satisfying these conditions is called an C(m) = C(D, mG)* = C*(D, m@)
order functionon R. A weight function is an order function
satisfying the additional condition that fg) = p(f) + p(g).
It is not difficult to show that if there exists an order functio

on k& then [t is an integral domain. The decoder corrects up ti{dgr — 1)/2| errors where

blf IG|S an |dea:jlgeﬂe[£ated b{; me T{ﬁe I pollytnormﬁIJ.r htdFR is the Feng—Rao distance to be defined later. One has
y’ + Glw,y), and R = Flz, y]/1 then there exists a weight ; —~ " 5 29 with equality if m > 4g — 2. The code

function p on R, R is an integral domain, and is a prime n
ideal. Furthermore the set C(m) has lengthn and for anyy € F}; we have

whereD = P, +---+P,; P, ---, P, G distinctF ,-rational
IPoints on a nonsingular absolutely irreducible cupvaf genus
g defined overl,.

{z*y°0 < a < B} yeC(m)e > yf(P)=0, forall fe LimQ).
j=1
is a basis forR and p(z) = « and p(y) = b. _ )
For I an ideal generated by a Type Il equation When 29 — 2 < m < n the codeC(m) has dimension

k=n—(m—g+1), sinceL(mG) has dimensionn — g+ 1
%y° 4+ ' + Gz, ) from the Riemann—Roch theorem because- 2¢g — 2 and the
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evaluation mapl.(mG) — Fy which mapsf € L(m@G) into
(f(P), ---, f(Pn)) is injective sincem < n.

Recall that a numbep; is a nongap forG if L(p;G) #
L((p; — 1)G). In this case there exists a function

¢i € L(piG) \ L((pi=1)G)
which means thap; has a pole of ordep; at G and no other
poles.

The nongaps satisfy

O0=p1 <p2 < <pg<pgy1 =29
andp, = i+g¢g—1fori > g+ 1, and the functionsp;,
t=1,2,---,m—g+ 1 provide a basis fol.(m@G).
Let R denote the ring of all rational functions oK with
poles only atG, that is,

2611

is called anerror locator. We remark that it follows from
the theorem of Riemann that the spat€r + ¢g)G) indeed
contains a nonzero error locator since

deg((T+9)Q— (P, +--+P.)) =g
SO
dimensionL((r +¢)G— (P, +---+ P ) > g—g+1=1
If & is an error locator we hav&.(fh) = Oforall f € R since
Se(fhy= > af(P)h(P)=0.
ieI={iy, =, ir}
On the other hand, we can prove the following.

Theorem 5.3:Let h € L((7 + g)G) satisfy Se(fh) = 0 for
all f € Rwith p(f) <74 2¢g—1thenh is an error locator.

0 Proof: The condition implies that the vectaw with
R= ] L(a@) coordinates e;(P,), ¢ = 1,---,n is a codeword in
a=0 C(r+29g—1). But7+4+29g—1 > 29 — 2 so this code

and let forf € R, p(f) denote the pole order of at G, that
is the smallest numbér, such thatf € L(bQ). If f € R and

has minimum weight at least+2¢g— 1 —-2g+2=7+1
which is greater tharnr and, thereforex = 0 and hence
O

y € F} we define thesyndromeS,(f) to be

Sy(F) = uif(F)
j=1

WP )=0,j=1,--, 1.

By combining the remark and the theorem one gets the
idea of obtaining the error locator in the following way.
Consider the following system of equations in the unknowns
so we have AL g, -

y € C(m) < Sy(f) =0,

’ )\7'-1—1:
for all f € R with p(f) < m.

n 7+1

In the decoding situation we receive a vectpmwhich is ' ' py _
the sum of a codeword and an error vectoe. We have z_:l cipi(Fr) ; Awpi( ;) =0, I=12 7ty
Se(f) = Sy(f) if p(f) < m, so the syndromeS,(f) can be '~ -
calculated directly from the received wordgff) < m. The or, equivalently,
standard decoding procedure for Reed—Solomon codes has the
following five steps. ity

1) Syndrome calculation. 2 Se(wip)i = 0, I=1,2,7+g

2) Obtaining a polynomial, called the error-locator polyno-
mial, which has the error positions among its roots. |t then follows from the discussion above that this system

Obtaining error positions. indeed has a nontrivial solution and that= 3 7% \¢p; is
4) Calculating error magnitudes. an error locator.

5) Recovering the codeword and the information symbols. The problem is that we only know, (w;¢;) if p(pie;) <
We will not discuss Steps 1) and 5) in detail since they afe, so in order to solve it we must have
fairly easy once we have a basis fé(mG), but we will
demonstrate how Steps 2)-4) are generalized to the codes

3)

(T+14+g-1D+@T+g+9g-1)<m

C(m).
Let the error positions bé’;,, P;,, ---, P;_. An element that is, 27 + 3¢ — 1 < m, with d* = m — 29 + 2 we get
h € R satisfyingh(F,,) = h(P,) = - = MFP.) =0 7 < (d"—g—1)/2
z 1 2 3 4 5 6 7 8 9 10 11 12 13
@i 1 X Y X2 Xy Y? X® X%y Xy? Y3 Xt X3y X?%y?
Pi 0 4 5 8 9 10 12 13 14 15 16 17 18
S(g;) ad ol 0 ad o ad a’ alt all ab a2 al2 0
¢ 14 15 16 17 18 19 20 21 22 23 24 25 26
@i Xy? v+ X'y X3%? X?%y? Xyt Y® XY%Y? X3?® X%yt Xys Y¢S X%y®
Pi 19 20 21 22 23 24 25 26 27 28 29 30 31
S((p7) 044 045 045 al? a? a? aG aG 043 aG 044 all alO
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Example 5.4: The Hermitian curve oveF ¢ has equation wheren is the smallest number such thatN) = 0. We will
% +y* +y = 0. It has genuy; = 6, 64 F,-rational points first prove

in the affine part, and one poi@} at infinity. As in Example

3.34 we havep(X) = 4, p(Y) = 5, and the functionsy Y,
0<a<5b 0<b 4a+5b < m gives a basis fol.(m@).

Let m = 31 then we get &64, 38, 21) code overFs, SO the
algorithm described above corre¢® — 1 —6)/2 = 7 errors.

Let o be a primitive element df ¢ satisfyinga*+a+1 = 0.

We consider a seven-error pattern where the errors are located

at the pointsP, = (1, a), P, = (a®, o), P3 = (a, &7),
Py = (042, 043)! P = (allv ag)' P = (0457 ag)'
P; = (o, o®), and the corresponding error valugs= o,

s =ad es =a’,es =, 65 = 1, g = ab, er = atf.

We get the table at the bottom of the preceding page. We

want a locator of the form
AL+ Xz + A3y + Aaz? + Aszy + det + Az + dszly

where the coefficients; satisfy the equation

® ot 0 o o o ol o4
A% ad A a7 alt oll a2 al?
0 o o ot ol o5 o2 o
o o o & a0 & o | AT
@ ot ool a2 0 ot & a2 [N
@ ol o 0 ot o ol? of A3
a” a2 a2 & o o2 1 & i4 =0.
a4 o2 0 & a2 o o of )\Z
al 0 ot a2 of o o of A
a® ot & o o a® o of | Dl
2 o o 1 b o o al?
a2 & a2 & af o a® a
L0 a2 o o & of o otll

Here we have used th&(X°)=SY*+Y)=a’+0=0a°
and the corresponding expressions f6(X°), S(X°Y),
S(X7), S(X®Y), and S(X?Y2).

It can be seen that

()\la )\Qa T )‘8) = (all’al3’al3’0’ alO’ 1a Oa 0)
is a solution so
h=a't+a®X +a®®Y + o’XY + o2 X2,

The zeros of this polynomial arB;, ---, P; and(a'!, a'?);
(0414, 0612); (064, C)éG).
Let d* = m — 2¢ + 2, then we get

21 +3g—1<d" +29—2
SO

T<(d"—1-g)/2.

Lemma 5.5:rank (S.) = 7.
Proof: DecomposeS as a product of the three matrices

A with elementsa;; = ¢;(P;), ¢ =1,---,N,j=1,---,n,
B a diagonaln x k matrix with ¢, ---, ¢, in the diagonal,
and A"

Then we haveS, = ABA® and
rank (A) = n = rank (4%)
SO

rank (§) = rank (B) = weight (e) = 7. O

Definition 5.6: For [ € Ny let
N = {(i, 5) € Nilpoi + p; =1+ 1}

and lety; be the number of elements iN;.

From the definition of the code€'(m) we have that if
¢ € C(m) and p; + p; < m then Sy(p;¢,;) = 0 but if
c € C(m)\C(m+1)andp, +p; = m+1thenSe(p,p;) #0
but this implies that

Lemma 5.7:If ¢ € C(m)\C(m+1) thenweight (¢) > vp,.
Proof: We can repeat the decomposition of the syndrome
matrix S, so this hasrank = weight (¢), but the nonzero
elements appears in different rows and columns with zeros
above, so this rank is at least,. O

Definition 5.8: For the codeC(m) we define
drr = glnri{w}
Theorem 5.9:The minimum distancé of C(m) satisfies
d > dpr.

Proof: This follows directly from the lemma. O

Theorem 5.10:If m > 49 — 2 thendpr = m — 2g + 2.
Proof: If m > 4¢g—2,1>m, andp; +p; =1+ 1, we
see thatifi > g+1andj > g+ 1 we getl — 4g + 2 solutions
and if: < g or j < g we get2g solutions so; =1 — 2g + 2
from which the result follows. O

We will now describe a procedure that, based on the known
syndromesSe(¢;¢;), pi +p; < m, determines the syndromes
Se(witv;), pi+pj <27+ 39— 1 whenr < [(drr — 1)/2].
Combined with Theorem 5.3 this then gives a method to find
an error locator. This is the brilliant idea of Feng and Rao
[23], that was made precise by Duursma [17].

We first note that in the syndrome matrix the first unknown

entries correspond to the indicés j) € N,, but as soon as

This was the original approach of Justesen, Larsen, Havemaoge, know ones;; with (¢, j) € N,, we know all s;/;» with
Elbrgnd Jensen, and Hgholdt [47], and of Skorobogatov afW, ;') € N,, since p(vip;) = plpirp;) SO

Viadu, [82].

The calculation above makes it natural to look at the matrix i = Aoy + g (2

of syndromes

Se = (Sij(e)) = (Selpiv;)), 1<i, j<N

where € F? andp(f) < m and this relation is independent
of the error vector.



BLAKE et al. ALGEBRAIC-GEOMETRY CODES 2613

Consider the matrix candidate, then there is at least one known discrepancy in the
S(, )= {sup|l <& <i, 1< <j} same row or column. Thus the number of pdiisj) € N,
’ - vy = = &, = = .

_ i _ which are noncandidates is at mo&fk. The number of
If pi + p; = m+ 1, then all entries of this matrix excepl; candidates i< + F, so

are known . .
) ) vm = #candidates- #noncandidates. T+ F + 2K.
S,1 0 S1,5-1 51,4
Sinceweight (e) < [(drr—1)/2| < (v, —1)/2, we therefore
getK + F < (v, —1)/2 < (T+ F + 2K — 1)/2 and hence
Si—1,1 " Si—1,5—-1 Si—1,j5
Si1 oS-t <.

But this means that all true candidates give the same correct

Definition 5.11: If (¢, j) € Ny, thatis,pi+p; =m+land | o fors;;, so we have proven the following theorem.

the three matrice§(i —1, j—1), S(¢i—1, j), andS(¢, j—1)
have equal rank, thefi, 5) is called acandidatewith respect ~ Theorem 5.12:If the number of errors in a received word
to the codeC(m). If (4, j) is a candidate, then there is awith respect to the cod€'(m) is at most(drr — 1)/2, then
unique values;; to assign to the unknown entey; such that the majority of the candidates vote for the correct value of
the matricesS(i, j) and S(i — 1, j — 1) have equal rank. S(vi¢;), pi +p; = m + 1.

P .
The elements}; is called thecandidate valueof the unknown .o \we can use this theorem until we have all the

/ — .. i 1 . .

syndromes;;. If s;; = s;; the candidate is calletftue and gy \qromes and then find the error locator. This completes Step
false otherwise. Lo . _ 2). In this way we get an error locatérin L((7 +¢)Q), soh

Using the relation (2) everyi’, j') € N; gives a candidate has at most +g zeros. Ifm > 4g—2 we haver +¢ < dpr— 1.
value for s;;. Denote the number of true F:apd_@a@sand If m < 4g—2, itis possible to extend the algorithm to get more
the number of false candidatds An entry (¢, j) is called @ eror Iocators, with the property that the number of common
discrepancyif it is a candidate but the matrice(i, j) and  zeros are<dpr — 1. We can therefore find a set of at most
S(i — 1, j — 1) have different ranks. T + ¢ points that contains the error positions by evaluating

Suppose nowweight (€) < |(drr — 1)/2]. Denote the the functionk at all the pointsP;, Ps, ---, P,, so this almost
number of discrepancies in the known part of the matridly completes Step 3).

A candidate is incorrect if and only if it is a discrepancy, so ) N
Example 5.13:We consider the Hermitian curve of Exam-

ple 5.4 withm = 25, so we get 64, 44, 15) code ovefF .

If entry (r, s) is a known discrepancy, then all entries s’) We will correct the same seven-error pattern as in Example 5.4.
is the »th row with s > s and all entries(+’, s) the sth The syndrome matrix is (in powers of, with « indicating a
column withr’ > r are noncandidates. {f, j) € N,, isnota zero) as shown at the bottom of this page. Herdenotes the

K + F < total number of discrepancies weight (e).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 4 * 5 9 9 7 1411 6 2 12 * 4 5 5 12 7 7 6 X
2114 5 9 7 1411 2 12 * 4 5 5 12 7 7 5 X
31 * 9 9 1411 6 12 = 4 5 5 12 7 7 6 X
415 7 14 2 12 * 5 5 12 7 0 5 x
519 14 11 12 * 4 5 12 7 7 5 X
69 11 6 * 4 5 12 7 7 6 X
7T 7 2 12 5 5 12 0 5 Xx
814 12 * 5 12 7 5 X
911 * 4 12 7 7 X
0,6 4 5 7 7 6
11 2 5 5 0 5 X
12 112 5 12 5 X
13| * 12 7 x
14 4 7 7
15| 5 7 6
16| 5 5 x
17 | 12 x
18| 7
19 | 7
20 | 6
21 | X
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syndrome corresponding te*y? with p(x*y?) = 26, which Kotter [40], and by O’Sullivan [68]. One could use the voting
is the first unknown. procedure described above to find all syndromes and then use
Using row operations one gets the matrix at the bottomdiscrete Fourier-like transform to get the error values. This
of this page. From this it is seen that the positigis11), is the approach of Sakata, Jensen, and Hgholdt [77].
(8, 8), and (11, 6) are candidate positions and by keeping
track of the performed row operations one sees also that the
candidate values in all three cases afeso this is the correct
syndromeS(f21). In the same manner one find$f22) = a3, One reason for the interest in algebraic-geometry codes is
S(fa3) = b, S(fas) = a*, S(fas) = a*t, S(fas) = '°, the fact that those codes can be used to give an asymptotically
which corresponds to the results of Example 5.4 and we cgaod sequence of codes with parameters better than the
now apply the basic algorithm for the cod&g as before. Varshamov-Gilbert bound in a certain range of the rate and
However, since we now know at modtr — 1 positions for large enough alphabets. In this section we will review the

VI. ASYMPTOTICS OFALGEBRAIC-GEOMETRY CODES

J C {1, ---, n} that include the error positions we can solveonstruction.
the system of linear equations given by Recall that a cod€’ is called an(n, M, d)-code ovef-, if
C'is a subset of ;' with minimum distancel and |C| = M.
Hz' = Hy" 2; =0, forall j ¢ .J Let
whereH is the parity-check matrix of the code. It is clear that Aqy(n, d) = max{M]|there exists arin, M, d)
the error vectoe is a solution and another solutianwould code overF,}

give H(z — )’ = 0 sox — e would be a codeword of weight
at mostdrr — 1 and hence must be zero. Therefates e. and
In this way we have found the error vector and Steps 3)
and 4) are completed. o(8) = limsup log, Aq(n, 6n)
The way we have presented the solution to the decoding n—oo n
problem has the complexity of solving systems of linear
equations, and is similar to the Peterson algorithm in usifigiS not hard to see that
error-locator polynomials for decoding Reed—Solomon codes. 1
It is possible to get lower complexity by using Sakata’s gen- a(6)=0, forl--<6<1 (4)
eralization of the Berlekamp—Massey algorithm, as was done 7
by Sakata, Elbrend Jensen, and Hgholdt in [77], O'Sullivaghd the Varshamov—Gilbert bound is the fact that
in [67], and Saints and Heegard in [71]. It is also possible to
find the error values by using a generalization of the Forney a(8) = 1— Hy(6), foro<é6<1-— 1 (5)
formula, this was done by Leonard [56], Hansen, Jensen, and

foro<s<1. (3)

7

1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21
11914 * 5 9 9 7 1411 6 2 12 * 4 5 5 12 7 7 6 Xx
2 *8 9 6 * 107 6 1 1313 1 12 0 6 0 x
3 v 131111 9 7 1012 12 7 5 14 10 x
4 *ro*r 5 * * 10 8 * * 4 13 x
5 * * * * * * 5 * * * 8 x
6 * * * * * * * * * o
7 o5 0 0 10 x
8 * * * * * * oy
9 * * * * * o

14 * * *
15 * * *
16 or X
17 X

18 *

19 *

20 *
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where H,(x) is the g-ary entropy function defined by could get asymptotically good codes by using the so-called
generalized Klein curves, which are defined by the equations
Hq(o) =0
Hy(x) =z log, (¢ — 1) — x log, v — (1 — ) log, (1 — =), xP @i+ al + w1 =0, i=1,2 -, m-1

1
0<z<1--.  overFs.
Pellikaan tried to determine whether this claim was correct
In [91], it is shown that by using algebraic-geometry codes (the curves are asymptotically bad as recently proved by

is possible to prove that Garcia and Stichtenoth), and suggested using the curves with
equations
ald)+6>1-— (6)
\/6_1 -T12+1-Tz+$12+.’17z+1:07 '[::1727...7m_1

if ¢ is a square. . . . .
It turns out that (6) gives an improvement of (5)if> 49. ovgr[F4. Th|s led Garcia and SQtlchtenoth in [28] to §tudy the

The inequality (6) is the Tsfasman-adit—zink bound. Fig. 1 2ffine varietyx,,, overF,, ¢ == given by the equations

shows the two bounds foy = 256. r—1 . L _

Let R = k/n be the rate and = d/n the relative minimum Ti Wiy L = T i=1,2-,m=1(13)

distance of an algebraic-geometry code as defined in Sect% they showed that,,,

. - is indeed a curve and
I1l. It then follows from the results in that section that

_  N(xm)
g—1 1 N\Xm) 1
>1_2 - im =7 (14)
R+621 - (7) mhe g Cxm)
Whereg is the genus of the curve involved in the COI’]StI’UCtiO%O in this way one can obtain an asymptotica”y good sequence
In order to construct a sequence of good codes we therefgfecodes meeting the Tsfasmanadlt—Zink bound. Notice

need curves with low genera and mdny-rational points. For that the equations are of the following type:
a curve over, of genusg with N F,-rational points we get

from the Hasse—Weil bound (3.38) that F(z;, ziy1) =0, fori=1,---,m—1
Let F(.’L’, y) _ xr—lyr +y— 2"
N(g)

A(g) = limsup

g g The affine plane curve with equatiofi(x, y) = 0 has the

_ _ _ _ property that for every nonzero elemente [, there are
whereN(g) is the maximal number df ,-rational points on a exactlyr nonzero solutions ifr, of the equatiorF'(x, y) = 0.
curve of genug overF,. The Hasse—Weil bound implies thatThis is seen by multiplying the equation withand replacing

zy With z. Then we get the equatiott + » = ="+, which is
Alg) <24 9) an equation of the Hermitian curve ovEy. For every given
In 1983, VEdu,and Drinfeld [16] improved on (9) by showing® in Fq the element:™** is in F,. and since the left side is
that the trace map fronfr, to F,. we getr distinct z’s such that
2" 4+ » = "L, If, furthermore,z is not zero, theny = »/x
Alg) < Vq—- 1 (10) is defined and is also nonzero. Therefore, the curvehas
(g — 1)r points with nonzero coordinates fy,. Consider the

Whengq is a square, lhara in [46] and Tsfasmana®ff, and map

Zink [92] showed that
A(q) — \/(‘7 -1 (11) Tm: Xm — Xm—1

by studying the so-callechodular curvesover finite fields. ~ defined as
This in turn means that there exists a sequence of codes

SatiSfying 7rTn(xlv Tty Tm—1, xrn) = (-Tla Tty xrn—l)-
1 . If (z1,---, xm—1) is a givenF ,-rational point ofy,,_, and
Rto21- Vi—1 wheng is a square (12) Tm—1 # 0, then there are exactly possible nonzero values
for «,, € F, such that(z, - -, £m_1, ©m) IS @ point ofx,,.
and, therefore, (6) follows. S _Therefore, by induction, it is shown that
The construction using modular curves is difficult. It is
possible to do this with polynomial complexity but the ac- N(xm) > (g —1)r™ L.

tual construction of generator or parity-check matrices is
intractable, so many researchers have tried to find a mdree genus of the curvg,, is more difficult to calculate. It
simple construction. In [22], Feng and Rao suggested that dealone by induction using the Hurwitz—Zeuthen formula [83]
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to the coveringr,.: xm — xm—1, Which in this case is an development of asymptotically good binary codes, using ideas
Artin—Schreier covering. The result [30] is from algebraic geometry, remains an elusive and challenging
goal.

The combinatorial structure of linear codes has been an
interesting chapter in coding theory. Designs with excellent
parameters often result from codes with exceptional structure,
such as the Golay and quadratic residue codes and extremal
from which (14) follows. self-dual codes [10]. With the superior proper'ueg of code

ctlgsses developed from algebraic geometry, one might expect

In order to make the codes really constructive one needsan investigation of their combinatorial properties would show
find the right divisorG and the bases for the vector spaces 9 prop

L(G). This seems to be very difficult. For the codes comingigm;t(iaés-rzf tlr?gisutlr%?slofr: o?rfl ?,yﬁizhSttLu:tlcjézéga;rgugff;;23
from x3 it has been done by Vof3 and Hgholdt in [101]. b '

Garcia and Stichtenoth [28] also presented another asymrrp]>l-ght prove mterestmg.. .
) - . ~The intimate connections between codes and lattices, and
totically good sequence of curves. Here the defining equations : . X .

more generally, sphere packings in Euclidean spaces, is now

PR 7,771—1 _ 7,(771—1—1)/2
_27,(m—1)/2 +1,
PR 7,771—1 _ lTrn/Q-I—l

—37’"’/2 —pm™/2-1 41 if m = 1mod2

=1mod?2
(15)

if m
Q(Xm) =

are . well established and a very active area of research [7]. The
el xig = ;i i=1,---,m—1 (16) lattices and sphere packings derivable from codes in algebraic
i+l et 1’ o geometries where the resulting properties can be related to
over E . the properties of _the curves used, might prove i_nteresting.
Hereq one also has For exampl_e, lattices resulting from _certam e_l!lpt|c curves
[18], [19], yield the best known packing densities for their
lim N{(xm) —g—1 (17) dimensions. Perhaps further investigations in these directions
n—=o0 g(xm) will yield results of interest.

and, moreover, quite recently Pellikaan, Stichtenoth, and Tor-There is little doubt that future investigations of the ideas

res in [69] succeed in calculating recursively the nongafg alglebralc gegme"_y_ applledlto the(:jsz,_ a”f? other, areas will
sequence of), the point at infinity. reveal new and exciting results and directions. One cannot

: . help but feel that the mathematical elegance of the ideas of
Let S, denote the semigroup of nongapscatn x,,. For . ; .
m > 1 let group gaps@in x algebraic geometry has yet to be fully exploited. It is hoped
- that this brief review has provided a look at where the subject
if m is even (18) Stands today, as a platform for further work.

if m is odd.

m _ . m/2
_J 4 a’,
Am = {qrn _ q(rn—l—l)/Q7

ThenS; = Ny and form > 1 ACKNOWLEDGMENT
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The two sequences of curves given by (13) and (16) have

recently been shown to be specific examples of modular curves

by Elkies [20].

Srn,—l—l = qun, U {.’L' S l\IO|-/L' Z Arn,—l—l}-
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