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Permutation Codes for the Gaussian Broadcast 
Channel with  Two Receivers 

CHRIS HEEGARD, MEMBER, IEEE, HUGO E. DEPEDRO, MEMBER, IEEE, AND JACK K. WOLF , FELLOW, IEEE 

Abstruc+A deterministic coding scheme for reliable transmission over 
the Gaussian broadcast  channel  with two receivers is considered. llte 
coding scheme is based  upon  Slepian’s permutat ion muduht ion codes.  It is 
shown that it is relatively easy for both receivers to accomplish maximum 
likelihood detection even  though one  receiver must instrument a  composite 
hypothesis test. Bounds on  the performance of various codes are given. 
The  parameters of the codes are chosen in order to achieve the best 
performance. The  performauce of the best codes are ampared with 
results predicted by  random coding and  with time sharing of ordimuy 
permutat ion codes.  

I. INTRODUCTION 

P ERMUTATION codes were introduced by Slepian 
[l] as a  coding scheme for an  additive Gaussian noise 

single-user communicat ion channel. An attractive char- 
acteristic of these codes is that one  can achieve maximum 
likelihood decoding with a  decoder  whose complexity 
grows algebraically with block length. 

In this paper  we consider the use of permutation codes 
for the Gaussian broadcast channel  with two receivers [2]. 
We  will show that if the code is used in a  particular 
manner,  the decoding algorithm proposed by Slepian for 
the single-receiver case can be  used for one  receiver while 
the other receiver uses this algorithm with a  slight mod ifi- 
cation. Both receivers achieve maximum likelihood decod- 
ing. Good  permutation codes for the Gaussian broadcast 
channel  are found by a  computer search. The  perfor- 
mance of these codes are compared with results previously 
obtained by random coding arguments. 

In the next two sections, the work of Slepian on  per- 
mutation codes and  the work of Cover [2] and  others 
[3]-[5] on  the broadcast channel  are briefly summarized. 
In subsequent  sections, we examine in detail the notion of 
utilizing permutation codes for the Gaussian broadcast 
channel. 

II. PERMUTATION CODES FOR THE SINGLE-USER 
CHANNEL 

Slepian considered two classes of permutation codes for 
the single-user channel: Variant I and  II codes. A descrip- 
tion of these codes follows. The  codewords of the code are 
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n-vectors with real number  components.  We  denote these 
codewords as u,, u2,. . . ,u, where M  is the number  of 
codewords. 

Variant I Codes: The  codeword u, is an  n-vector of the 
form 

where the oli are k real numbers such that (Y, < I+ < * * * < 
c+. The  ni are positive integers satisfying 

n,+n,+*-* +n,=n. 
The  other codewords u,, u,, . * * , u,,., are chosen as all dis- 
tinct vectors that can be  obtained by rearranging (permut- 
ing) the components of ui in all possible ways. There are a  
total of 

M=n!/ fj n,! 

codewords. 
i=l 

Variant II Codes: The  first codeword u, is as above 
with the added  restriction that all ai are nonnegative. The  
M- 1  other codewords are formed by assigning algebraic 
signs to the nonzero components of ui in all possible ways 
and  then rearranging these signed components in all pos- 
sible ways. The  number  of codewords is then 

M= 

I 

2” 
( 1  

n!/ ijr n,! , if cu,>O 
i=l 

2”-“I 
( 1  

n!/ fi n,! , if a,=O. 
i=l 

We next consider decoding algorithms for Variant I and  
II codes. We  assume the following. 

a) Each codeword from the code has apriori probabil- 
ity l/M  of being transmitted. 

b) The  received vector consists of the transmitted 
codeword plus a  noise vector. The  components of the 
noise vector are identically distributed statistically inde- 
pendent  Gaussian variates with mean  zero and  variance 

2 
(I. 

c) The  receiver is to choose that codeword that m ini- 
m izes the probability of decoding to the wrong codeword. 
Such a  decoding rule is called maximum likelihood decod- 
ing. 

A block diagram of this system is shown in F ig. 1, 
where ri is that codeword selected by the decoder.  Slepian 
has shown that the decoding algorithms that lead to the 
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Fig. 1. Block diagram and single receiver systems. 

smallest error probabilities for the two types of codes are 
as follows. 

Variant Z  Decoding Algorithm: 

1) Replace the n, smallest components of the received 
vector by (11,. 

2) Replace the n, next smallest components of the 
received vector by (Ye. 

k) Replace the n, largest components of the received 
vector by CQ. 

Variant ZZ Decoding Algorithm: 

1) 

2) 

4 

Replace the n, components of the received vector 
that are of the smallest absolute value by + (pi or 
-(Y,, each sign chosen to agree with that of the 
component it replaces. If LX, =O, the sign is im- 
material. 
Replace the n2 components of the received vector 
that are of the next smallest absolute value by + tx2 
or - 02, each sign chosen to agree with the compo- 
nent it replaces. 

Replace the n, components of the received vector 
that are of the largest absolute value by + ok or 
- Q, each sign chosen to agree with the component 
it replaces. 

We will refer to these algorithms as Slepian decoding 
algorithms. Slepian has derived upper and lower bounds 
on the probability of error for these decoding algorithms 
and has optimized the choices of the oi and n, to m inimize 
the upper bounds. 

III. GAUSSIAN BROADCAST CHANNEL AND 
INFORMATION THEORY 

The two-receiver broadcast channel as considered by 
Cover [2] and others [3]-[5] is a model of a communica- 
tions system where a single codeword is transmitted over 
two distinct channels and is received by two receivers. We 
assume that the channels have different signal-to-noise 
ratios. The receiver with the better signal-to-noise ratio 
must decode all of the information carried by the code- 
word, while the other receiver must decode only some of 
this information. A model for the system where the 
channel noise is assumed additive is shown in Fig. 2. 

Fig. 2. Two-receiver broadcast channel (additive noise). 

Fig. 3. Capacity region of Gaussian broadcast channel. 

We now give a more detailed description of the broad- 
cast channel. Every n time units, source 1 produces a 
message I, and source 2 produces a message J. Messages I 
and J are statistically independent random variables that 
are uniformly distributed over the sets 1,2; . . ,M, =2”‘1 
and 1,2;.-,M2=2 nr2, respectively. It will be convenient 
to define R, = rl + r2 and R, = r2. Each pair of messages is 
statistically independent of all other message pairs. 

The encoder has available a set of M= M1.M2 code- 
words ui, i= 1,2; * *, M , each one of which is a vector with 
n real components. The encoder is a one-one mapping 
from the M  message pairs (1, J) to the M  codewords. The 
codewords are chosen such that the average value of the 
sum of the squares of their components (averaged over all 
codewords) is constrained to be less than or equal to nS. 

Decoder 1 receives the transmitted vector corrupted by 
the noise vector z,, a vector that adds component by 
component to the transmitted codeword. The components 
of z, are statistically independent Gaussian random vari- 
ables of zero mean and variance uf. The codeword re- 
ceived by decoder 2 suffers a similar fate, but the compo- 
nents of the additive Gaussian vector z2 have variance a:.’ 

Decoder 1 produces an estimate of both Z  and J. Call 
its estimates (i,j). Decoder 2 produces an estimate only 
of J. Its estimate will be called J. The measures of 
goodness for the system are the probabilities of error for 
the two decoders, P, and P2, defined as 

decoder 1: P,=P {(I^zZ)u(j#J)} 

decoder 2 : P,=P{J”#J}. 

Of interest are those rate pairs (rl,r2), or equivalently 
(R,, R,), such that both P, and P2 can be made as small as 
desired by choosing n large enough. This region called the 
capacity region is found by a random coding argument. 
(Actually the random coding argument only shows that 

‘An equivalent model would have ya, the received vector for decoder 
2, formed by adding a Gaussian vector to yi, the received vector for 
decoder 1. In this form, the channel is referred to as a degmded 
broadcast channel. 
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good codes exist in that region. A converse theorem is 
used to prove that good  codes do  not exist outside the 
region.) The  capacity region has been  shown to be  given 
by the following parametric equations: 

R, <; log, 1+ ( &) +i log2( 1  +T) bits/time unit 

8s R, <; log, l+- 
( 1  SS+ U2’ 

bits/time unit. 

Here 6  is a  parameter that is al lowed to vary over the 
range (0, l), and  8  is defined as (1 - 6). The  general  shape 
of the region is shown in F ig. 3. 

The  discrete-time mode l described is often taken to 
represent two band-limited Gaussian channels both of 
bandwidth W  where all signals are sampled every l/2 W  
s. In that case, the basic unit of time  is l/2 W  s. In 
addition, if all logarithms are taken base 10, the rates 
measured in units of dits/Hz and  denoted (R;,R;) are 
bounded as 

R;< log,( l+&)+log,,,(l+~) dits/Hz 

dits/Hz. 

Treating these inequalities as equalities and  only con- 
sidering the interesting part of the boundary where R; < 
R;, one  can solve for S/u: in terms of R;, R;, and  
uz/uf A K (K > 1) as 

A= 1oR; + loRi(K- 1) -K k Side& 
4  

Sideal is the m inimum normalized signal power required 
to achieve the rates R; and  R; for a  ratio of channel  noise 
powers K. Later the actual normalized signal power of 
deterministic codes that achieve low probabilities of error 
(P, < 10w5, P2 < 10P5) will be  compared with Sideal. 

IV. PERMUTATION CODES FOR THE GAUSSIAN 
BROADCAST CHANNEL 

We next consider how permutation codes can be  used 
to transmit information over the Gaussian broadcast 
channel  with two receivers. Several different approaches 
were considered, and  only the best of these is discussed 
here. The  basic problem was to find a  technique that led 
to two decoders of reasonable complexity while yielding 
small probabilities of error for reasonable signal-to-noise 
ratios. 

The  basic coding technique is as follows. The  set of M  
codewords (from either a  Variant I or II permutation 
code) is partitioned into M2  sets, each set containing 
M , = M /M2 codewords. The  encoder  mapp ing from the 
message pairs to the codewords is such that when the 
sources produce the pair (I, J) =(ij), the encoder  pro- 
duces the ith codeword from thejth set. 

The  first decoder  that operates on  the received signal 
with the higher signal-to-noise ratio produces the m ini- 
mum error probability estimate of which codeword was 
transmitted. This results in the message estimate (i,j). 
Such a  decoder  can utilize the appropriate Slepian decod- 
ing algorithm to achieve this m inimum error probability. 

The  second decoder  that operates on  the received signal 
with the lower signal-to-noise ratio must make a  m inimum 
probability of error estimate of the set to which the 
transmitted codeword belonged. This second decoder  
must instrument a  composite hypothesis test that usually 
requires a  very complex algorithm. However, we will show 
that if the sets are chosen in a  particular manner,  this 
second decoder  can be  instrumented in a  manner  almost 
identical to the first decoder.  In particular, for a  given 
method of choosing the sets, the second decoder  uses the 
appropriate Slepian decoding algorithm to find the 
m inimum probability of error estimate of both I and  J 
and  then ignores the estimate for I. The  resultant estimate 
for J, name ly .& is then the m inimum probability of error 
estimate of the set to which the signal belonged. 

We  now explain how to choose the M2  sets. We  begin 
by considering Variant I codes. For simplicity, we initially 
consider the special case where all n  components of the 
vector ui are distinct: i.e., n, = n2= * * * = nk = 1. Later we 
shall remove this restriction and  also consider Variant II 
codes. 

We  consider that the codeword u, is broken up  into L  
segments as 

where the borders of the segments are shown by dotted 
vertical lines. The  number  of components of u, in the jth 
segment is m j. 

We  now consider all those permutations that rearrange 
components within a  segment but do  not interchange 
components that are in distinct segments. There will be  
M , = llT= i (mj)! such permutations. Using a  double sub- 
script notation for the codewords (the reason for which 
will become apparent soon) we call these codewords u,,, 
42, * * * UIM,. For example if ui = ( - 2,Ql j 4,5 ), then 

u11  =( -2, 0, 114, 5) 
u12 =( -2, 1, 014, 5) 
Ul3 =( 0, -2, 114, 5) 
Ul4 =( 0, 1, -2 I 4, 5) 
u15  =( 1, -2, 0’4, 5) 
ui6 =( 1, 0, -2 ; 4, 5) 

U17 =( -2, 0, 115, 4) 
U18 =( -2, 1, 01  5, 4) 
U19 =( 0, -2, 115, 4) 
u1,,0=( 0, 1, -2 I 5, 4) 
u1,1*=( 1, -2, 0’5, 4) 
U ,,,2=( 4 0, -2 I 5, 4). 
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These M , = 12 vectors make up the first set in the parti- 
tion. 

It is well known that all n! permutations of the vector u1 
form a group with respect to an operation that permutes 
components of the vectors. Furthermore, the M , permuta- 
tions of the vector u,, which are formed by considering all 
rearrangements of components within segments but not 
interchanging components from different segments, form 
a subgroup of this group. 

Given any group and any subgroup of the group, one 
can obtain a coset decomposition of the group. In our 
case there will be M2 = M /M, = n! /rjk i(mj)! such cosets, 
each coset containing njki(mj)! vectors. It is these cosets 
that form the sets in our partition. Since permutations do 
not commute, we must specify the order of the operations 
used in forming the cosets. Rather than set up here the 
complicated notation needed to treat the problem in gen- 
eral, we illustrate the procedure by a simple example. Let 
q=( -1, 0 j 3, 4),and 

u*,=( - 1, 0 ; 3, 4) u*,=( -1, 3 ; 0, 4) 
u,2=( 0, -1 I 3, 4) u*z=( 0, 3 ( -1, 4) 
u,3=t - 1, 0 ; 4, 3) u,,=( -1, 4 ; 0, 3) 
u14=( 0, -1 I 4, 3) u,,=( 0, 4 1 -1, 3) 

&1=(-l, 4 ! 3, 
us*=t 0, 4 I 3, 

0) u4,=(3, 0 ; -1, 4) 
-1) u42=(3, -1 1 0, 4) 

u33=( -1, 3 ’ 4, 0) u43=(4, 0 ’ -1, 3) 
u34=( 0, 3 j 4, -I> u44=(4, - 1 ; 0, 3) 

+1=(4, 0; 3, -1) us,=(3, 4; -1, 0) 
+2=(4, -1 I 3, 0) ue*=(3, 4 I 0, -1) 
+3=(3, 0 ; 4, -1) U63=(4, 3 ; -1, 0) 
u54=(3, -1 , 4, 0) u&$=(4, 3 , 0, -1). 

For this example there are six sets, each set consisting 
of four vectors with two segments each, indicated by the 
dotted lines. The details of the procedure are explained in 
Appendix A. 

In the general situation, the ith element of the jth set 
would be denoted a+ This would be the vector selected by 
the encoder given that the sources produced the pair 
(I,J)=(i,j). Decoder 1 would use the Slepian decoding 
algorithm to decode. Decoder 2 would also use the 
Slepian decoding algorithm to first select a codeword. 
This word may indeed be different from that word 
selected by decoder 1 since there is different noise on the 
channels, and thus the decoders operate on different data. 
Assume the result of decoder 2 using the Slepian algo- 
rithm results in a codeword in the Jib set. (It is not 
important which codeword in that set was selected.) The 
decoder then outputs the estimate ~=JT A sketch of a 
proof is given in Appendix A showing that such a decoder 
achieves the m inimum probability of error in choosing 
among the sets. 

The procedure for forming the sets of codewords when 
not all components of the vector ui are distinct is as 
follows. Again, the first set is formed from all permuta- 
tions of u, that do not interchange components in dif- 
ferent segments. The only restriction is that if one compo- 
nent of u, is in a particular segment, then all components 
identical to that component are in that segment. For 
example, the following segmentation of u, would not be 
allowed: u, = ( 112 j 23 ), since the element two in two 
different segments. The other sets are chosen as the cosets. 

The partitioning of the codewords in Variant II codes 
into sets is now described by considering the following 
example. Let ui = (0, 1 i 2 ), and 

Ull =to, 1 i 2) 
u12 =( 1, 0 j 2) 

31 =(o, 2 i 1) 
52 =( 1, 2 ; 0) 

u51 =(2, -1 i 0) 
U52 =(2, 0 ; -1) 

U7] =(o, 1 : -2) 
u72 =( 1, 0 ; -2) 

U91 =(o, -2 i 1) 
$2 =( 1, -2 ; 0) 

U ,,,1=(-2, -1 : 0) 
U 11,2=( -2, 0 ; -1) 

u2i =(2, 1 / 0) 
‘c22 =(2, 0 ; 1) 

u4,=( 0, -1i2) 

u42 =(-I, 0 ; 2) 

% I =( 0, 2 i -1) 
u62 =( -1, 2 / 0) 

Ic81 =( -2, 1 j 0) 
us2 =( -2, 0 ; 1) 

u,,,,=t 0, -1 i -2) 
%l,2=( -1, 0 ; -2) 

u*2,,=( 0, -2 : -1) 
@ i&2=( -1, -2 ; 0). 

The general procedure for forming the table is to form 
the sets as for Variant I codes with the signs of all 
components positive and then to form new sets by repeat- 
ing these sets using all distinct signs for the nonzero 
components. 

It should be noted that the extra sign information (n or 
(n - ni) bits/channel use) is decoded by both receivers. 

V. BOUNDSONTHEPROBABILITYOFERROR 

Slepian derived both upper and lower bounds for the 
probability of decoding error for his decoding algorithm. 
These bounds apply directly to decoder 1. We will use 
only the upper bounds. In Appendix B, we derive upper 
bounds to the probability of error for the second decoder 
for both Variant I and II codes. 

For the numerical results given in the next section, one 
m inor modification was made for the case of Variant II 
codes where (pi -0. For this case, the second decoder does 
not assign signs to any of the components in the first 
segment. This has the effect of decreasing the rate to the 
decoder while at the same time decreasing the probability 
of error for the decoder. The first decoder does assign 
signs to all nonzero comnonents. 
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AS (dB) 

t 
TABLE I 

PARAMETERS OF CODES 

11 I 

Fig. 4. Performance of codes (K= 10, P, =  Pz < 10m5).  

VI. PERFORMANCE OF CODES 

In this section, we describe results obtained by a  com- 
puter program that performed a  gradient search to find 
the parameters of good  Variant II codes. The  following 
conditions were assumed in this search. 

a) The  value of K= u,‘/u: was set equal  to 10. (of= 1  
for normalization.) 

b) The  upper  bounds on  P, and  P2, the probabilities of 
error, were set equal  to 10e5. 

c) For each code, the following values were fixed: 

1) block length n, 
2) size of the segments m ,,m ,; - - ,m,, 
3) mu ltiplicity of the components n,,n2,. * * ,n,. 

d) The  amp litudes of the components were varied in 
the search until the smallest signal power S was achieved. 
It was always assumed, however, that the vector u, began  
with n, zeros. 

The  best amp litudes for certain codes meeting these 
requirements are given in Table I. To  explain the entries 
in the table, the first code (code 1) has 

a> 
b) 

4  

d) 

block length 10, 
three segments, the first with four components,  the 
second with five components,  and  the last with one  
component,  
u, starts with two zeros, then has one  component  
with the next amp litude, one  component  with the 
next amp litude, etc., 
the vector u, is given as 
u, =(O, 0, 6.6841, 13.1562 33.1201, 33.1201, 40.0098, 
40.0098, 46.853 1, 67.4472). 

For each code the value of S was computed such that 
the upper  bounds for the probabilities of error for both 
decoders were equal  to 1O-5. Then  after computing R; 
and  R;, Sideal was determined from the formula given in 
Section III. F inally AS = S - Sidea, was computed for each 

Code 

1 

4 

5 

7 

9 

13 

14 

16 

17 

18 

19 

20 

22 

24 

26 

L 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

7 

20 

10 

10 

211/221/l 

31/41/l 

13/41/l 

21/41/Z 

12/41/Z 

16/11/l 

52/11/l 

15/111/l 

24/11/11 

1141/2/l 

1141/11/l 

13/2/l 

55/42/4 

12/32/Z 

111/11111/11 

Amplitudes 

0. 6.7841 
40.0098 

0. 6.6775 
54.6912 

0. 6.6685 
55.6230 

0. 6.5820 
54.9714 

0. 6.5802 
55.5812 

0. 6.9053 
54.5443 

0. 7.0693 
53.6634 

0. 6.9552 
40.6995 

0. 7.0619 
54.2385 

0. 6.5360 
40.2017 

0. 6.5850 
39.6873 

0. 6.5702 

0. 7.3051 
58.4083 

0. 6.5986 
56.0613 

0. 6.7255 
39.2061 
59.1436 

13.1562 33.1201 
46.8531 67.4472 

27.2913 34.0939 

28.3092 35.1217 

27.3243 34.0814 

27.9569 34.7199 

28.0459 34.3743 

27.1799 33.4686 

27.8499 34.2299 
61.0288 

27.9372 34.2672 
60.8449 

13.2893 20.1253 
61.1071 

13.3853 20.2633 
46.2806 66.5394 

27.7159 48.5341 

29.5432 36.449 

27.6881 34.5324 

13.2489 32.6464 
45.8006 52.4410 
79.4198 86.3957 

TABLE II 
PERFORMANCE OF CODES 

4 

5 

7 

9 

13 

14 

16 

17 

18 

19 

20 

22 

24 

1.613 ,981 10.2317 

1.301 ,981 8.7303 

1.422 ,981 8.7357 

1.397 1.101 9.0116 

1.457 1.101 9.0393 

1.282 ,692 9.90685 

1.137 ,692 10.0368 

1.438 ,826 9.8889 

1.457 ,861 10.2013 

1.518 ,692 10.8219 

1.578 ,692 11.1125 

1.265 .8355 9.1399 

1.568 1.06 8.8633 

1.517 1.101 9.0869 

26 1.854 1.102 11.5347 

code and  plotted in dB versus R,' and  R; in F ig. 4. As can 
be  seen, the codes require about 9  dB more signal power 
than that power predicted by information theory for very 
long random codes. Numerical values of AS for the vari- 
ous codes are given in Table II. 

It is natural to compare the performance of the afore- 
ment ioned coding technique with those results obtained 
by time-sharing two of Slepian’s permutation modu lation 
codes. Let C, and  C, be  two permutation modu lation 
codes with rates R,, and  Rc2, respectively (measured in 
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12 

? 

I 
d 

A  
b 

Fig. 5. Comparison of performance of wdes with time-shared codes. 

dits/Hz). C, and C, may be two distinct codes or the 
same code. We transmit a codeword from the code C, for 
a fraction of the time equal to (1 -X) where 0 < X < 1, at a 
power P,. We transmit a codeword from the code C, for a 
fraction of the time equal to X at a power P2 > P,. The low 
noise receiver (receiver 1) attempts to decode both code- 
words, while the high noise receiver (receiver 2) only 
attempts to decode the codeword from code C,. The rates 
of transmission to the two receivers then are 

c, c2 

Class a code A 
Class b code A 
Class c code B 
Class d code B 

code A 
code B 
code A 
code B 

R;=(l-A)R,,+AR,, (dits/Hz) 
R; = XR,, (dits/Hz), 

The performance of these time-shared codes are given in 
Fig. 5 along with a few of the broadcast codes. Although 
no broadcast code had exactly the same rate pair as a 
time-shared code, broadcast codes are seen to outperform 
time-shared codes having similar rates. 

while the average power is given as ACKNOWLEDGMENT 

P,“=(I -X)P, +AP,. The authors wish to acknowledge the detailed com- 
Two codes, each of block length 10, were chosen to ments of the referees that were of great help in revising 
compare with broadcast codes of the same block length. this Paper. 
These codes have the following parameters. 

APPENDIX A 

n m  Amplitudes 
Code A 10 3, 3, 3, 1 0, 7.0814, 14.0512,21.0215 

(Code 13, Table I, Slepian) 
Code B 10 2, 4, 2, 2 0, 7.0672, 14.0365, 20.9950 

(Code 14, Table I, Slepian) 

The codes were chosen so that the rates fell into a range 
comparable to those rate points found in Table I. Four 
classes of codes were considered. 

This appendix serves several purposes. It describes how the 
codewords are partitioned into sets by means of a coset decom- 
position. It proves the optimality of the Slepian decoding algo- 
rithm for decoder 1, using a graphical technique. This technique 
then is used to give a sketch of a proof of the optimality of a 
modified Slepian decoding algorithm for decoder 2. 

A permutation p is an operator that transforms one real 
n-vector into another real n-vector by permuting (rearranging) 
the components of the vector. If p =(iJ,k; * . ,I,m), then v=pu 
is a vector where the jth smallest element of u is replaced by the 
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REAL LINE 

I I< I 

Fig. 6. Dip for perrnutationp =(1,2). * 
Yl y3 

ith smallest element of u, the kth smallest element is replaced by 
thejth smallest element,. . . , the mth smallest element is replaced 

Fig. 7. Dip for permutation p  = (1,5,2,4,6,3). 

by -the Ith smallest element, and the ith smallest element is 
replaced by the mth smallest element. 

We  first consider the Slepian decoding algorithm for decoder 
1 and show that it leads to the smallest possible probability of 
error. It is well known that if the codewords are of equal energy 
and equal a  priori probabilities, the minimum probability of 
error decoding algorithm chooses the codeword that maximizes 
the likelihood function. For the additive Gaussian channel, the 
optimum decoder finds the codeword ui that maximizes the inner 
product (y,,uJ. 

For any received vector y,, take the codeword u that has its 
components ordered the same as y,, Consider another codeword 
that is related to u by a permutation p, i.e., v =pu. We consider a 
quantity to be called the difference inner product (abbreivated 
dip) of p  defined as &,A&-(y,,u-v). We  will show that the 
dip is always greater than or equal to zero for all permutations 
with equality resulting from the identity permutation v = u. This 
will prove the optimality of the Slepian decoding algorithm since 
it shows that (yi,u) > (y,,v) for all v=pu if u  is the codeword 
whose components are in the same order as the components of 
Yl* 

We  begin by considering a simple example. Assume that 
p  =(1,2) so that u  and v agree in all positions except for the two 
smallest components. Let u, and u2 be the smallest and next 
smallest components of II, respectively. Similarly, let yi andy2 be 
the smallest and next smallest components of y,. Then the dip is 
<YI,A>, =YI(U, -u~)+Y~(u~- Q=(Yz-yi)(u2- ud, which is 
certainly greater than zero sincey,>y, and u2 >u,. A diagram of 
this result is Fig. 6. Points ui and u2 are plotted on the real line 
with u2 to the right of ui since u2 > u,. An arrow above the real 
line pointing from u, to u2 contains a “positive” weightingy,. An 
arrow below the line pointing from u2 to U, represents a “nega- 
tive” weighting Y,.~ The net weight of the length of the line 
segment from ui to U, (i.e., (u2 - ui)) is the sum of all the positive 
weightings minus the sum of all the negative weightings. 

More complicated dips can be represented in this manner. We  
consider only permutations with a single cycle since multiple- 
cycle permutations would simply involve multiple graphs. For 
example, the permutation p  = (ij, k, + * * , I, m) is drawn according 
to the following rules. 

The example of Fig. 7  should clarify this procedure. From the 
graph we find 

+(Y5+Y4-Y2-Y1)("4-u3)+(Y5+Y4-Y2-YI)(u3-u2) 

+ (Ys -YJ(uz- Ul). 

The dip (yi,%, as previously described, is positive for any 
permutation p  and equal to zero for the identity permutation. 
This follows from two facts. The first is that every permutation 
forms a closed cycle. This means that the total length of 
positive-weighted line segments (in the dip diagram) is equal to 
the total length of negative-weighted line segments. The second 
fact is a  result of rule 3), which assigns the weights to the dip 
diagram. For each weighted line segment ui to ui+,, the positive 
weights are >yi+ i, while the negative weights are < yi. Since 
yi+ i >yi, the net weight must be > 0, i.e., positive. Since decoder 
1 must find the maximum inner product, the optimum decoding 
algorithm is to decode to the codeword that has the same order 
as the received vector y,. This is precisely the Slepian decoding 
algorithm. 

We  now turn to the decoding algorithm for the second de- 
coder. Again, if all codewords have equal energy and equal a  
priori probability, the decoding algorithm that minimizes the 
probability of choosing the wrong subset of codewords is the one 
that maximizes the likelihood function over all the subsets. The 
likelihood function over the Gaussian channel for the ith code- 
word subset is 

ZeXp -“y2-u,i’t2 5k~exp@2,Yu) 
j 

2 j 
where 11. (1 denotes the Euclidean norm. 

This likelihood function is maximized for the kth subset if for 
every i#k 

(Y2,"kj) a  (Y2P”ti) 

for all values of j (j = 1,2,. . f , M,). 
We  now consider how to form the M2 subsets of codewords. 

We  will use the fact that the set of all unique permutations on a 
vector u forms a non-Abelian group. We  begin by partitioning 
the elements of u  into L  ordered classes Ci, 1  <i <L. The  

1) Label the points ui,t+,uk; . . , u,,u,,, along the real line. maximum component in class Ci is less than the minimum 
2) Draw an arrow from ui to t+ uj to u,, . . . ,u, to u,, and u,,, component in class Cj if i+. We now form a subgroup of 

to Ui. If the arrow points to the right, draw it above the real permutations S. The set S is described in terms of the character- 
line; if it points to the left, draw it below the line. istics of the dip ( y2, A)P diagram. A permutation is a member of 

3) Weight each arrow according to its termination, e.g., for ui S if the weighted arrows of the dip diagram do not cross class 
to uj the weight is yj. boundaries. Certainly the identity permutation is contained in S. 

As an example we consider the simplest nontrivial case where 
n-3 and L=?!. Specifically, we let Ci=(u~,u~), C,={u:} (SU- 

2The terms “positive” and  “negat ive” here do  not refer to the signs of perscript indicates class membership); then S = {I, (1,2)}: The 
y , and  yz, but rather to the fact that the length of the line segment  from permutation (1,2) E S, but (2,3) @  S since the former’s arrows do 
u, to u2 is weighted by (y2-yi). not cross the class boundary while the latters do (Fig. 8). 
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I 
I =CLASS BOUNDARY 

Fig. 8. Dip for permutation ES and B S. 

Fig. 9. “Broken” cycles yield permutations that satisfy condition 2 
on T. 

The set S forms a subgroup. The cardinality of the subgroup is 

ISI= ii, IGl!-MI. 

Since we have now defined a subgroup to the group of all 
permutations on II, we can decompose the group into cosets. 
There are n ! / 1 S 1 =M2 cosets, each represented by a permutation 
called the coset leader. The set of coset leaders is represented by 
T. The ith coset consists of the composition permutations +ti, 
tiE T, sj E S for all values of j (the permutation 5 would be 
performed before t,.). For purposes of proving optimality, the set 
T is chosen judiciously. The permutation p is acceptable as a 
coset leader if the dip diagram satisfies the following conditions. 

1) The weighted arrows always cross at least one class 
boundary. 

2) No two arrows of opposite directions terminate in the same 
class. 

By definition, the identity permutation is included in T, and 
the only permutation in common between S and T is the 
identity. We give a plausibility argument, rather than a proof, 
that we can always find a permutation for the coset leader of 
each coset that satisfies the two conditions. The first condition is 
intuitively reasonable. Since the permutations of S do not cross 
class boundaries, the coset leaders must do so if we wish to 
complete the coset decomposition. It is slightly harder to see that 
the second condition can alwqvs be met. Let us consider an 
example. Suppose n = 4, L = 3, C, = {u:}, C2 = {u& uz}, and Cs = 
{ u:}. We might try the permutation (1,2,4,3) as a coset leader, 
but the second condition could be violated. To remedy this, the 
permutation cycle could be “broken” into the two cycles (1,2) 
and (3,4) that would both satisfy the second condition and 
would generate the desired coset (Fig. 9). This breaking of the 
permutation cycles can always be done and will yield the desired 
coset leader [6]. 

Consider the “modified” difference inner product (mdip) 
(y2,A),,,, A = v - w. The vectors u, v, and w are related by the 
permutations v = su, w = tv where s E S and t E T. The ordering 
of u and y2 are assumed the same. We examine the influence of 
the permutation t on the mdip. For a given t there exists a set of 

Y’, I 
S=I 5 = (‘,2) 

I 

- 
I - 

I I ’ 2 
“I “2 I”3 1 “1 ‘4 I “3 

4 -%-- 

Fig. 10. Two mdip diagrams for t =(2,3). 

w+ 

“1 k 
“i+l 

w- 

Fig. 11. Manner in which w - and w + are assigned. 

M, mdip that can be represented by a mdip diagram similar to 
the diagrams previously used. 

Consider the simplest nontrivial case (n = 3, L = 3, C, = z&u:, 
C2= uf) for the permutation t = (2,3). The two mdip diagrams 
(one for s = Z and one for s = (1,2)) are shown in Fig. 10. From 
the diagram, we see that the mdip are 

(~2&=(2,3+1 =(Yc-Y:)(+-II:) 

(y2A t-(2,3w=w =(Y32-Y:)(4-4). 
It is important to recognize the common characteristics of any 

set of mdip diagrams for a given permutation t E T. Each dia- 
gram has the same number of arrows with each corresponding 
arrow having the same weight. Also, the end points of each 
corresponding arrow (same weight on arrow) be in the same 
class (i.e., the superscripts of the end points of each arrow are 
independent of the permutations s E S for each t E T). 

The mdip is positive for all s E S for any t E T. When t = I, the 
mdip is zero. This is a result of the fact that the permutations are 
closed as well as the manner in which the superscripts are 
assigned on the weights of the mdip diagram. Consider the 
assignment of the weights on the line segment u/ to ui”, i (see Fig. 
11). There are two cases we must consider. 

Case I: If k-j+ 1, then w+ >yj+i (y’=an element from the 
ith class), and w- < yj (condition 1) on coset leaders). Since 
yi>y’ if i>l, then w+-w->0 (i.e., the net weight on the 
length of the line segment u;’ to ui”,, is positive). 

Case 2: If k = j, then w + >yj, and w - Q yj. The net weight 
w+-w- will be definely positive iff either w + >yj or w - qj. 
This will always be the case due to condition 2) on the coset 
leaders. 

Therefore the mdip (y2,A),, will be positive for every t E T 
and SE S. This leads to the maximum likelihood decoding 
algorithm for decoder 2. The encoder will transmit a codeword 
from a fixed wset decomposition table based on the vector u. 
The receiver will attempt to determine which wset the received 
vector y2 belongs. If the ordering of y2 is the same as the vector 
II, then the maximum likelihood estimate of the coset is that 
which has the identity coset leader since the mdip is positive for 
all values of t E T. If the ordering of y2 is related to u by the 
permutationp, then ideally the receiver could apply the inverse 
permutation p - ’ to y2 and to the coset decomposition table 
(which would leave all dip unchanged) and then decode in the 
same manner as if y2 and u were of the same ordering. The net 
result of this discussion is that the optimum decoding algorithm 
for decoder 2 is to first decode the received vector y2 by the 
Slepian decoding algorithm giving 0. The estimate of the coset of 
the transmitted codeword is the wset that contains li. 
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&'PEmIX B where +(2)=(1/G ) exp-(,/2)zz. Combining these results we 
UPPERBOUNDONPROBABIL ITYOFERF~ORFORSECONDDECODER Obtain 

Variant Z  Codes  

We relabel the components of u1 as 

t-n ,,+ 4+n12+ t-r+,+ ] f-n,,-+ ; . l---n (I-@(~-a~+,,,))“~“~ dz. 
11, =  ((r~,...(Y,, cx,2”‘Ct,2 **- a ,p,“‘a*p, , cQ,“‘cx2,” , I /=I 

+m, 
segment 1 

>Itm,-+ ’ 
Since all codewords are sent with equal a  priori probability, 

, segment 2 I the overall probability of error for the second decoder (for 
, Variant I codes) is given as 

; t--n,,+ f--n,,‘/ 
, (yL~“‘CxL1”’ LyLpL...a~p~) 

P,= 
. . . & ycP2w 

i t-m,- But since all codewords differ only in the order in which the 
, segment L  symbols are transmitted, by reordering the symbols, we can 

We  will assume that u, was transmitted and that R was received 
convert any codeword to u,.-Then the upper bound for the error 

by the second decoder. By assumption, the components of R are 
probability assuming u, was transmitted is also an upper bound 

independent Gaussian random variables with means ou and 
for p 2,y for every i. Thus the upper bound for P,,,, is also an 

variances ui. For convenience in this derivation, we normalize so 
upper bound for P2. 

that uz= 1. 
Define the new sets of random variables Xi and &, i= 

1,2;.-,L, as  

Xi=minimum component of R in segment i 
yi = maximum component of R in segment i. 

Using the union bound, the probability of error for decoder 2, 
given that u, was transmitted, can be upper bounded as 

L-l 
P Z/u,< 2  p[yi>xi+ll* 

i=l 
To evaluate P[ Y,. > Xi+ ,] we note that 

P[yi>&+~l=J~ p f~~i+,(Yi,xi+~)dXi+~ dyi -cQ -lx 

L-l 

p2/~, G Z ptY;:>xi+l)+ptE2)’ 
i=2 

where frx(. , 0) is the joint pdf of Y and X. Here E2 is the event that 2, > X2, where Z, is the maximum of 
Since the components of the noise are statistically independ- the absolute value of the components of R in segment 1. We  

ent, xi+ 1 and Yi are statistically independent random variables. now find that 
Then 

P[ &>xi+I]=jm f&(Yi)lY’ fX,+,(xi+l) dxi+l h  
-0Z -02 

Variant ZZ Codes  

For Variant II codes, we will only require the second decoder 
to assign signs to components in segments 2 through L. That is, 
from the standpoint of assigning signs, we will treat all the 
components in the first segment as if they were all zeros. This 
strategy of course reduces the rate of information to the second 
decoder. 

Using the notation introduced for Variant I codes and assum- 
ing u, was transmitted (which has all positive signs), a  union 
bound for P2,., yields 

P(E,)=P [Z, >X2]=/m fZ,(z)Fx,(z) dz  
-CC 

I -~fY;(YilFX,+,(Yi) dyi 
where = 

where F’( *) is the cdf of X and fr( .) is the marginal pdf of Y. 
But 

FXi+l(z)=l-PIXi+I>zl 
To find the pdf of Z,, we first note that 

= 1 - P [all components of R in (i+ 1)th segment >z] 
F,,(z) = P [magnitude of all components in segment 1 < z] 

“. 
pi+1 

where 

=l-j~,(l-9(r-rui+,J))‘“” 

To find the marginal pdf of 5, we first note 

=,G, [qZ-a,j)-@ (-z-a’j)]n’~. 

Differentiating to obtain the pdf, 
PI 

(Hz - au) ++tz+ a*,)) 
fziz)= ,z, n”(aqZ--(Y,l)-@(-z-cq,)) 

F&(Z)=P[Yi<z] 

= Pi [all components of R in ith segment < z] 

=jil [aqz-a~)]“. 

Differentiating to obtain the pdf we obtain 

.jtl [~(z-Lqj)-(P(-z-acrlj)]? 

Combining these, we obtain 

~ [~(z-~2j)I"~(~(Z-~'j)--(-z-~~))n'dZ. 
j=l 
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Finally we obtain the upper bound for Pzju, and thus Pz as 

p~~~~~/_mm~~,~i~~~~~~~~~~(m(z-,,))fl~ 
[ll 

PI 

. I- Jj (l-@(~-a~+,,,))~‘+~~ dz 
i 

P,+i 

/=I 1 131 

141 

03 p’ 
+ 

I x 
(+(z-~d+44z+~u)) 

-mI=*nl’(~(z--(Y,I)-~(-z--n,,)) 151 

.j~,(m(z-.,))n*J(@(z-.,)-o(,-,,))n’k!z. 
161 
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