
1030 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 9. SEPTEMBER 1988

Linear Sum Codes for Random Access Memories

Abstract-Linear sum codes (LSC’s) form a class of error
control codes designed to provide on-chip error correction to
semiconductor random access memories. They use the natural
addressing scheme found on RAM’s to form and access code-
words with a minimum of overhead.

In this paper, we formally define linear sum codes and examine
some of their characteristics. Specifically, we examine their
minimum distance characteristics, their error correcting capabili-
ties, and the complexity involved in their implementation. In
addition, we look closely at an easily implemented class of single,
double, and triple-error correcting linear sum codes.

Index Terms-Error control codes, memory fault tolerance,
random access memories, redundancy in RAM’s, semiconductor
memories.

I. INTRODUCTION

RROR control codes have been used for years to improve E the reliability of random access memory (RAM) systems.
Until recently, however, they have been implemented at the
board level [l], [l l] ; typically, each k-bit word in a
computer’s memory is stored as an n-bit codeword from an (n ,
k) binary block code, with each bit stored on a different RAM
chip.

As RAM chips have become bigger, with capacities in
excess of 1 Mbit, the use of on-chip error control is being
considered more and more as a means of constructing reliable
memory systems. As chips become more dense, soft (or
nonpermanent) error sources such as alpha particle radiation
[2] and circuit noise can dominate RAM operation and make
them useless; a two-tiered combination of chip-level coding
and board-level coding may well prove to be the most effective
means of controlling these soft error sources. In addition,
recent results [3] have shown that the traditional means of
controlling hard (or permanent) defects detected during the
manufacturing process-row/column spare switching-may
not be effective for very large memory arrays. Thus, the need
for powerful, easily implemented codes for on-chip operation

Manuscript received May 14, 1986; revised March 30, 1987 and August
14, 1987. This work was supported by NATO Grant 215184, NSF Grant
ECS-8352220, by a grant from AT&T Information Systems, by the AT&T
Bell Laboratories Ph.D. Scholarship Program, and by Caltech’s Program in
Advanced Technologies sponsored by Aerojet General, General Motors,
GTE, and TRW. This work was presented in part at the International
Symposium on Information Theory, Brighton, England, June 23-28, 1985,
and at the Allerton Conference on Communications, Control, and Computing,
The University of Illinois, October 2-4, 1985.

T. Fuja is with the Department of Electrical Engineering, Systems Research
Center, University of Maryland, College Park, MD 20742.

C. Heegard is with the School of Electrical Engineering, Cornell
University, Ithaca, NY, 14853.

R. Goodman is with the Department of Electrical Engineering, California
Institute of Technology, Pasadena, CA 91 125.

IEEE Log Number 8718423.

may well become great within a few generations of memory
devices.

Two different codes have been used to provide on-chip error
correction. The first is a bidirectional parity check code
developed by Nippon Telephone and Telegraph [4]-[7] for use
in 256K3, lM, and 16M RAM’s; this code uses a simple
product-code-type design to provide single error correction.
The other is a shortened Hamming code implemented on an
256K RAM by Micron Technologies of Boise, ID [8].

Linear sum codes (LSC’s) form a general class of codes
which are suitable for on-chip error correction [9], [lo]. They
are a generalization of the bidirectional parity check code
which allows for multiple error correction. The linear sum
codewords are two-dimensional and similar to product code-
words; the difference lies in constraints put on the decoding of
such codewords to make them more applicable to on-chip
error correction. This constraint limits the error correcting
capability of the codes to a function of the sum of the
minimum distances of the constituent codes rather than the
product.

In this paper, we will define linear sum codes and list their
major characteristics; in addition, we will examine some
practical issues related to the implementation of one, two, and
three-error correcting binary linear sum codes. The larger
issues concerning on-chip error control-the cost-effective-
ness of on-chip versus board-level coding, for instance-are
not addressed. At this point, linear sum codes should be
regarded as a “tool” capable of increasing the reliability of
RAM systems; their role in an “optimal” error control
configuration-if such a thing exists-will be determined by a
better understanding of the error mechanisms that afflict
semiconductor memories.

11. A DESCRIPTION OF LINEAR SUM CODES
In this section, we define what a linear sum code is and

show why such codes are suitable for on-chip error protection.
We briefly describe some important characteristics of these
codes.

A . Code Definition
Consider a k2 x k , array of q-ary memory cells containing

an arbitrary pattern of symbols. (For most cases of interest, q
= 2’ for some positive integer b; for RAM’s like those
currently used, q = 2 .) Call this the information array. To
each of the k2 rows add rl = nl - kl additional symbols such
that each row constitutes a codeword from a systematic (n l ,
k l) linear block code over Fq. (Here, Fq is the finite field
containing q elements.) Similarly, add to each of the k l
columns r2 = n2 - k2 parity symbols such that each column
forms a codeword from a (possibly different) systematic (n2,

0018-9340/88/0900-1030$01 .OO 0 1988 IEEE

FUJA er al.. LINEAR SUM CODES FOR RANDOM ACCESS MEMORIES 1031

Fig. 1. The general layout of an (nl , k , , n,, k,) linear sum codeword.

k2) linear block code. We call all possible configurations thus
constructed for the given constituent codes an (n , , k l , n2, k2)
linear sum code over Fq. (Fig. 1)

As described, sum codes are similar to the well-known
product codes [12], the difference being that the “parities on
parities” that appear in a product code are not computed. In
addition, we include in our definition of linear sum codes a
constraint on the decoding of such codes; specifically, we
require that the estimate of any symbol in the information
array be a function of only the row and column to which that
symbol belongs rather than the whole codeword.

The decoding constraint is imposed to make these codes
structurally suitable for implementation in semiconductor
RAM’S. These memory chips are arranged in rectangular
blocks, and the addressed bit is specified as a word-linelbit-
line intersection. Conceivably, linear sum codewords could be
implemented on the word lines of a RAM; that is, the bit-line
address could be split into two smaller addresses, forming a
two-dimensional sum codeword in each word line. (The
bidirectional parity check codes of [5]-[7] are implemented
this way.) The decoding constraint means that to decode any
given bit, only those bits sharing one of these smaller
addresses with the desired bit are ever considered; thus, the
decoding scheme takes advantage of the addressing scheme.

B. Characteristics of Linear Sum Codes

In this section, we examine the minimum distance and error
correcting characteristics of linear sum codes.

1) Minimum Distance Properties: It is well known [12]
that the minimum distance of a product code is equal to the
product of the minimum distances of the constituent codes.
Since a sum codeword represents a “fragment” of a product
codeword-with the corner parities removed-one might
suspect that the minimum distance of a sum code is less that of
the corresponding product code. The following lemma con-
firms this for many interesting cases.

Lemma 2.1: Consider an (n, , k , , n2, k,) linear sum code
with minimum distance d,,,,,. Let dkln and dfn,, be the
minimum distances of the row code and the column code,

Furthermore, suppose the two systematic block codes making
up the sum code have the following property. There exists in
each constituent code at least one minimum weight codeword
with exactly one nonzero symbol in the information segment of
the codeword; that is, in the row code (resp., column code)
there is a codeword of weight d;,, (resp., df,,,) with only one
nonzero symbol in its information segment. In this case, (2.1)
holds with equality.

Proof: See the Appendix.
This lemma gives one reason why we refer to these codes as

sum codes (although the next section gives another, more
compelling reason). It is worth noting that many important
block codes-including parity checks, Hamming codes, and
Reed-Solomon codes- have the property described in Lemma
2.1; thus, the minimum distances of sum codes constructed
from these block codes can be computed from (2.1).

2) Error Tolerating Capabilities of Linear Sum Codes:
The decoding constraint on linear sum codes suggests that
minimum distance is not the best measure of a code’s
performance; minimum distance gives the number of symbols
where two codewords differ, but the decoding constraint tells
us that the entire codeword is not available to the decoder.

A better parameter is described as follows. Let b , be the
maximum number of errors that can be tolerated in the ith
row and j t h column when decoding the (i, j)th symbol in the
information array; that is, there exists a decoding function that
can map an ith rowljth column combination corrupted by up
to b,, errors onto the correct (i , j) t h entry. (Note we say
tolerated as opposed to corrected; we only want to correct the
(i, j) t h entry.) If we let

b = min b,
1 4 k 2
J G k l

then b indicates how many errors can be tolerated in any row1
column combination. We will call such a code a b error
tolerating linear sum code because as long as no rowlcolumn
combination contains more than b errors, any bit in the
information array can be correctly decoded as a function of the
row and column to which it belongs.

To see how b is related to the constituent codes, we must
examine still another set of codes-those consisting of all
possible row/column combinations.

For a given (nl, k l) linear row code CI over Fq and a given
(n,, k2) linear column code C,, also over Fq, let C, be the set
of all permissible ith rowljth column combinations. (1 < i <
k2, 1 < j < k l) That is,

where F;1+”2-l is the set of all (nl + n2 - 1)-tuples over Fq.
(Note that we are taking the convention that the (i, j) t h symbol

1032 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 9, SEPTEMBER 1988

in the information array is the last entry in the (nl + n2 - 1)-
tuple.)

Thus, for every (i, j) pair, CO is an (nl + n2 - 1, kl + k2
- 1) code over Fq. In particular, if we let

H I = [A I * * a Ani],

and

H2=[B, a * * B,,]

be, respectively, parity check matrices for the row code and
the column code, then

Finally, if we define the tolerating distance as

then the following lemma holds.
Lemma 2.2: Consider a linear sum code with tolerating

distance d, as defined in (2.2). Such a code is capable of
tolerating L(d, - 1)/2] or fewer errors in any row/column
combination.

Proof: Suppose we want to decode the (i , j) t h bit in the

L

is a parity check matrix of C,.
Now, let us partition Cij. For each s E Fq, define

C;,={c E c,: C n l + n 2 - l = S } ,

the set of all possible ith rowljth column combinations that
contain the symbol s at the row/column intersection. It is easy
to verify that C:. is a subgroup of C, and that { C$:s E Fq } are
the q cosets of C;.

Now, suppose we wish to decode the (i , j) t h entry in the
information array using only the ith row and the j t h column.
The following is a minimum-distance decoding algorithm.

1) Decode the received row/column pair into the closest
codeword c^ E C,.

2) The estimate tit of the (i, j) t h entry in the information
array is given by tit = tnI + n2-

A decoding error will be made only if sufficient symbol
errors occur to cause the decoded (nl + n2 - 1)-tuple to be in
the wrong coset. Thus, the relevant parameter is not the
minimum distance of C, but rather the distance between the
cosets. We define this parameter as

djj=min min IIx-yII
r * S XECL

where Hij is a parity check matrix for C,.
If we let w = (r - s)- I (x - y) , then

d. = min II WII
wH:, = 0

W n l + n 2 - I = ’
= m i n I I w I I .

Thus, d, is equal to the weight of the minimum weight
codeword in Cf. In fact, it follows that dij is equal to the
weight of the minimum weight codeword in C: for any non-
zero s.

w E C t

information array. As long as there is a total of at most L(d, -
1)/2] errors in the ith row and j t h column, the codeword in C,J
that is closest to the received row/column pair will be in the
same coset of C; as the codeword that was originally written.
Thus, the decoding algorithm described above will yield the

Of course, the definition of d, given in (2.2) is not one that is
easily computed. This is taken care of in the following lemma.

Lemma 2.3: Consider an (nl, kl, n2, k2) linear sum code
over Fq with tolerating distance d,. Let dkln and dfnin be the
minimum distances of, respectively, the row code and the
column code. Then

correct result. QED

d, = db,, + dfnln - 1.

Proof: Define Cf (1 < i < k2, 1 < j < k l) as above. By
construction, every codeword in C,!, is made up of a nonzero
row codeword and a nonzero column codeword. Thus,

dlJ 2 dbln+ dfn,,- 1

for all i and j (1 < i < k2, 1 < j < k2); so,

d, = min diJ 2 dLln + dkln - 1.
1.1

To get the opposite inequality, let c1 and c2 be minimum
weight codewords for the row code and the column code,
respectively. Let j ^ and î be the positions of the first nonzero
components in c1 and c2, 1 < i^< kZ, 1 < ;< kl. Once again,
because the constituent codes form linear vector spaces, we
can assume that these nonzero components are both the symbol
“1 .” Construct the codeword c * E C;;consisting of c1 in row
rand c2 in column;. Clearly, c * E Cl;, and IIc*II = d:,,, +
diln - 1. Thus,

d, < diy= dbln + dfn,,, - 1.

And so, equality holds. QED
Consider, then, the class of linear sum codes whose

constituent codes have the property described in Lemma 2.1.
This result tells us that, to decode any symbol in the
information array of such a code, we can do no better looking
at the entire codeword than we can just looking at the row/
column to which the desired symbol belongs.

FUJA er al.: LINEAR SUM CODES FOR RANDOM ACCESS MEMOFUES 1033

111. A CLASS OF BINARY LINEAR SUM CODES SED code with k l = 2/1 and k2 = 2/2, then

In this section, we will take a close look at a particularly
simple class of binary (i.e., q = 2) linear sum codes-those
codes which can be constructed from parity checks, Hamming
codes, and extended Hamming codes. We will show how these
three simple codes can be used to implement single, double,
and triple-error tolerating LSC's.

We will tailor our analysis to issues concerning efficient
implementation of these codes. The decoding algorithm given
in Section 11-B-2 is a very general means of decoding a symbol
in the information array of a linear sum codeword; in this
section, we will examine easily implemented decoding al-
gorithms which are specific to the codes we will be studying.
In addition, we will determine what code rates can be achieved
for each of the codes under consideration.

In our analysis, we will make some assumptions about the
dimensions of the LSC's we are studying. Specifically, we
assume that the row codes are (n l , k ,) linear codes and that k l
= 2'1 for some nonnegative integer I , ; similarly, we assume
that the column codes are (n2, k2) linear codes with k2 = 2/2.
These assumptions are made because in a random access
memory the rows and columns are defined in terms of a binary
address; thus, the number of these rows and columns will
always be a power of two.

R*(L)=max{R(lI, 1 2) : lI+12=L}

2L
for even L

The decoding algorithm for an SED/SED sum code is very
simple. Suppose that w was written into the (i, j) t h position in
the information array and a possibly corrupted version y is
read back later. Let S, and S, be the modulo-two sums of the
ith row and thejth column, respectively. Our estimate ti, of w
is computed as follows:

if (S,=S,=I)ti ,=y 8 1

else G = y .

If there is at most one error in the ith row and the j t h column,
6 = w.

A . Single-Error Tolerating Binary LSC's B. Double-Error Tolerating Binary LSC's
The simplest linear sum code is one in which the two

constituent codes are single-error detecting (SED) parity
checks; such codes have minimum distance two, and thus an
LSC constructed from two SED codes is a single-error
tolerating code since the tolerating distance dt = 2 + 2 - 1
= 3. We will refer to such a code as an SED/SED code.

In the binary case, this code is in fact the bidirectional parity
check code of [5]-[7]. Nippon Telephone and Telegraph has
designed a 256K RAM and a 1M RAM which use this type of
code to provide on-chip single-error protection. The advantage
of this scheme is its high rate and its simple decoding
algorithm. However, it is limited in that it is only capable of
correcting a single error in each codeword; thus, in the event
of a hard defect in a codeword, there is no soft error
protection.

Let us begin our analysis of the SED/SED codes by
determining the maximum achievable rate for a fixed informa-
tion array size. Suppose we want to provide single-error
correction to a codeword containing 2 bits in the information
array. We can achieve this with a (2'1 + 1, 2'1, 2/2 + 1, 2/2)
SED/SED code where ll + l2 = L . The number of parity bits
in such a codeword is 2'1 + 2'2. If we define CY = l l /L , then ll
= CYL and 12 = (1 - a) L ; thus, for fixed L = 1, + 12, we can
write the amount of redundancy as a function of CY:

By simple calculus, it is seen that for CY E [0, 11, Q(a) is a
continuous, convex U function with a unique minimum at CY

= 1/2. Thus, to minimize redundancy (and so maximize rate)
we want to make the information array as square as possible. If
we define R(l l , 12) to be the rate of an (nl, k , , n2, k2) SED/

From the results presented in Section I, we know that to
design a two-error-tolerating liner sum code we must use
constituent codes which satisfy

dkin+dkin 2 6 , (3.1)

where dLin and diin are the minimum distances of the
constituent codes. There are two obvious alternatives which
satisfy (3.1) with equality.

1) Let both constituent codes be single-error correcting
(SEC) Hamming codes (dmin = 3). We will refer to a code so
constructed as an SEC/SEC linear sum code.

2) Let one of the constituent codes be a single-error-
correcting/double-error-detecting (SEC-DED) extended
Hamming code (dmin = 4) and let the other be a single-error
detecting (SED) parity check (dmin = 2) . We will refer to such
a code as an SEC-DED/SED linear sum code.

In this section, we will analyze these two alternatives.
Specifically, we will demonstrate easily implemented decod-
ing algorithms which attain the two-error-tolerating goal, and
we will determine what code rates are achievable for a fixed
information array size.

1) Decoding Algorithms: In this section, we will describe
specific, easily implemented algorithms for decoding a bit in
the information array of both an SEC/SEC code and an SEC-
DEDISED code. Each of the algorithms described will
correctly estimate the (i, j)th bit in the information array
provided there is at most two errors in the ith row and the j th
column.

a) SEC/SEC Codes: We wish to estimate the (i, j) t h bit
in the information array based on the ith row and the j th
column.

1034 IEEE TRANSACTIONS ON COMPUTERS. VOL. 37. NO. 9. SEPTEMBER 1988

Let S, be the syndrome of the ith row, and let S, be the
syndrome of the j t h column. For simplicity’s sake, let us
assume that the syndromes are computed such that they
“point” to the estimated error position; that is, S, = m for 1
< m < n, implies that when the mth hit in the ith row is
inverted, the ith row constitutes a valid codeword from the
row code. Of course, S, = 0 implies that the ith row already is
a valid codeword. Similarly define S , .

Just as in Section 111-A, assume that w was written into the
(i, j) t h position in the information array and that at a later time
we read back a possibly corrupted version y . Our estimate G
of w is then computed according to the following algorithm:

if ((S,=O) or (S,=O))G=y

else if ((S ,= j) or (S , = i)) G = y e 1

else G = y .

Lemma 3.1: For an SECiSEC code with L 2 4.

I for odd L .

To prove this, we will make use of the following lemma.
Lemma 3.2: For fixed L 2 4, consider the even function

ML:R --t R defined by

b) SEC-DEDISED Codes: Again we want to estimate
the (it j) t h bit in the information array based on the ith row
and the j th column.

codeword; define S, as the syndrome of the ith row. Just as in
the last section, choose the S, such it “points” to a single
error; in addition, if a double error is detected, then set S, =
- 1. Define s, as the modulo-two sum of the j th column;

= 1. The following algorithm generates our estimate GJ:

if ((S,= j) or (S , = - 1 and S,= I))G=y

M ~ (~) = ~ (L / ~) - w (:+,, 1) + ~ (L / Z) + ~ (i-x+ 1) .

Assume that the SEC-DED code is on the rows of the sum Then ML(x) is a convex function on 12 - (L/2), (LIZ) -
2] with a unique at = O*

To see why this lemma is important, note that for an (n, k
= 2‘) linear block code (1 2 21, it takes I + 1 parity bits to

= 2, this is just the (7, 4) Hamming code; for 1 2 3 it is a
shortened version of the standard (2 / + ’ - 1, 2/+ I - (I + 1)
- 1) Hamming code. Thus, for I , , 1, 2 2

Proof’ See the Appendix.

thus, an odd number of errors in the j th column will yield S, provide correction (i.e.> n - k = 1 + 1). For 1

1

else G = y . Q(l1, 12)=Q(lz, ll)=2’1(12+ 1)+2’2(1, + I),

2) Achievable Code Rates: In this section, we will
compare the two-error-tolerating binary codes in terms of
optimal rate for a fixed information array size.

In our analysis, we assume that the constituent codes are an
(n,, k,) code and an (n2, k2) code and that k l = 2‘1 and k2 =
2/2 for integer values I , , 12 2 0. Thus, there are 2L bits in the
information array, where L = I1 + 12.

We will analyze both SEC/SEC and SEC-DED/SED codes;
define Q(l I , 12) to be the number of redundant cells in an (n l ,
k , , n2, kz) two-error-tolerating linear sum code when k , = 2’1
and k2 = 2/2. Similarly define R(l I , 12) to be the rate of such a
code; thus,

Finally, define R * (L) to be the highest rate for an (n l , k , ,
n2, k2) two-error-tolerating linear sum code when k l = 2’1, kz
= 2/2, and L = 1, + l2 is fixed, i.e..

R*(L) = max{R(I1, 1 2) : / l+ l*=L}.

a) SEC/SEC Codes: First consider the case where both
the row code and the column code are SEC binary Hamming
codes. It can be shown that for L 2 4, the optimal rate is
achieved by making the information array as square as
possible. We state this more precisely in the following lemma.

and so for L 2 4

Q(i, L - i) = M L ($i) for i = 2 , 3, L - 2 .

Lemma 3.2 implies that for even L 2 4,

and for odd L 2 5 ,

To find Q(0, L) and Q(l , L - l), we note that the relevant
codes are the (3, 1) repetition code and the (5 , 2) shortened
Hamming code. Thus, for L 2 3, Q(0, L) = 2 L + 1 + L + 1
and Q(1, L - 1) = 3(2L-l) + 2L; both of these are greater
than ML(O) for L even, L 2 4, and both are greater than
M ~ (1 / 2) for L odd, L 2 5. Thus, Lemma 3.1 is proven.

b) SEC-DED/SED Codes: It is not as simple to
maximize the rate of an SEC-DEDISED code for a fixed
information array size 2 L as it was for the SEC/SEC code.
Since the two constituent codes are of a different type, one
might suspect that the information array must be skewed in
some way to maximize the code rate. This is in fact the case,

FUJA et al.: LINEAR SUM CODES FOR RANDOM ACCESS MEMORIES 1035

and the precise skewing needed is given in the following It only remains to show that we can achieve no better rates
lemma. by letting I I = 0 or lI = 1 . For lI = 0, the SEC-DED code is

Lemma 3.3: Fix L 2 2 and define m = m (L) to be the a (4 , l) repetition code; thus, Q(0, L) = 3(2L) + 1 . For ll =
nonnegative integer satisfying 2 m - m < L < 2 m - 1 - (m - 1 , the SEC-DED code is a (6 , 2) shortened, extended
1) . Then Hamming code, and so Q(1, L - 1) = 2 L + 1 + 2. Both of

these are larger than Q(l:, I,*) for L 2 2; thus, R * (L) = R(lT , I , *) ,
Q (I T , I , *)= min Q (l l , L - l I)

O < l , < L where
L + m

I:=

and

Thus,
? I

To prove Lemma 3.3, let us first restrict ourselves to the
case lI 2 2 . Since it requires ll + 2 parity bits to provide
single-error correction and double-error detection to 2'1 bits
when lI 2 2, it is easy to see that

Q(l l , 12)=2'1 +2'2(11 + 2) for lI 2 2.

Taking this cue, define for L 2 2 a function NL:R + R
thusly

N , (~) = 2 " + 2 ~ - " (~ + 2) .

To prove Lemma 3 . 3 , it would be nice to show that NL(x) is
convex U on the interval [2 , L] and that a unique minimum
occurs in a small neighborhood around x = (L + m) / 2 .
However, since we are really only interested in integer values
of x , it is sufficient to prove the following easily proven
weaker condition.

Lemma 3.4: The function N L (x) defined above satisfies the
following inequalities:

NL(x) < N L (x - 1) for x E 3 , - [L : m]

and so Lemma 3 . 3 is proven.
One final word should be made about the SEC-DED/SED

configurations which achieve R*(L). Lemma 3 .3 tells us that
for L 2 2 , a (2 / ; + I;" + 2, 2 / ; , 2/2* + 1, 2/2*) code attains
the best rate possible of any SEC-DED/SED code with 2L
information bits. However, it does not say that this configura-
tion is the only one which achieves this rate. A careful reading
of the proof of Lemma 3.4 indicates that this configuration is
in fact uniquely optimal except when L is of the form 2m - m
for integer m; in this case, both (l:, I,*) and (l? - 1, 1; + 1)
achieve R * (L) . For instance, in the case L = 12(= 24 - 4)
the best rate can be attained with either an (n, = 266, kl =
256, n2 = 17, k2 = 16) SEC-DED/SED code or an (nl =

137, kl = 128, n2 = 3 3 , k2 = 32) SEC-DED/SED code.

C. Triple-Error- Tolerating Binary LSC 's
Finally, let us consider an LSC constructed from two binary

single-error-correcting: double-error-detecting (SEC-DED)
extended Hamming codes, each with a minimum distance of
four. Such a sum code has d, = 7 and thus is capable of
tolerating three errors, we will refer to such a code as an SEC-
DEDISEC-DED binary linear sum code.

We begin our analysis by determining which rates can be
achieved for fixed information array size 2 L . In fact, in this
respect, our analysis for SEC-DED/SEC-DED binary codes
is essentially identical to our analysis of SEWSEC codes in
Section 111-B-2-a. By identical arguments we claim that the
maximum achievable rates are attained by letting the informa-
tion array be as square as possible; that is, if we let R (I I , l*) be
the rate of an (n , , k l , n2, k2) binary SED-DED/SEC-DED
code with kl = 2'1 and k2 = 2'2, then the following lemma
holds.

Lemma 3.5: For L 2 4,

Lemma 3.4 tells us that

min Q (l 1 , L - l l)
Z<I,<L

for L + m even

= ~ i ~ ~ ~ ~) T , l,*), Q(lT + 1 , 1; - l) } for i + m odd.

f 3 L

= { 3 L

Simple calculations show that Q(l;", I,*) < Q(1: + 1 , 1: -
1) ; thus,

Now consider the decoding of an element in the information
array of an SEC-DED/SEC-DED codeword. Assume that w Q(I;", I,*)= Z < / l < L min Q (l l , L - l l) .

1036 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 9, SEPTEMBER 1988

K = k l k l
data cells per
word line

N-K parity cells
per word line

n
Column
Address

v

U0 BUFFER
I

Fig. 2. Layout of a typical RAM using linear sum code

was written into the (i , j) t h position in the information array
and that a possibly corrupted version y is read back. Let S, and
S, be, respectively, the syndromes for the ith row and the j th
column; just as in Section 111-B-1-a, assume that the syn-
dromes “point” to a single error and that a double error is
indicated by a syndrome of - 1. Let ti, be our estimate of w;
then execution of the following algorithm will result in ti, = w
provided there is at most three errors in ith row and the j th
column:

if ((S,=O) or (S,=O))$=y

else if ((S,= j) or (S,=i) or (S,=S,= l))ti,=y I

else ti,= y .

IV. IMPLEMENTATION AND COMPLEXITY OF BINARY SUM CODES

In this section, we investigate the practical aspects of
implementing on-chip binary sum code error correction. We
describe the organization and structure of sum-coded RAM’S
and assess the complexity of implementing different row/
column codes in terms of the number of gates needed.

A . Implementing Sum Codes
Fig. 2 shows a possible organization of a one-bit-wide

dynamic RAM chip encoded with a linear sum code. The chip
consists of a rectangular array of one bit memory cells, sense
amplifiers, refresh circuits, selector and addressing logic, as
well as the ECC circuitry.

The memory cells are organized as m N-bit word lines,
each of which uses K = klk2 cells for data and N - K cells
for parity. The total user capacity of the RAM is therefore mK
bits, which implies log2 m + log2 K address bits. These
address bits are decoded by a row encoder and a column
encoder.

The row decoder uses the log2 m row address bits to enable
exactly one of the m N-bit word lines. Each read and refresh
cycle operates in such a way that all the cells in one complete
word line (and hence one complete sum code block) are read
out to the sense amps simultaneously.

The column decoder then uses the log, K column address

bits to specify the particular bit being addressed. In doing so, it
breaks up these log2 K bits into a group of log2 k l bits and a
group of log, k2 bits. The log2 kl bits specify a row in the sum
codeword and the log2 k2 bits specify a column. The
intersection of these two addresses specifies the one data cell
in the word line that is being addressed, and the data selector/
multiplexer selects and outputs this bit to the ECC unit.

The remaining major functional unit in the coded RAM is
the I/-Hcode selector block. This unit outputs the vertical and
horizontal component codewords associated with the bit being
addressed, (i.e., the row codeword addressed by the logz k l
bits and the column codeword associated with the log2 kz
address bits). These codewords, together with the addressed
data bit are fed to the ECC unit which performs any necessary
correction and outputs the corrected bit to the user.

The shaded portions in Fig. 2 show the areas that represent
the ECC overhead. There are essentially only three areas of
interest. These are the extra memory cells needed to store the
parity checks, the selector block needed to “pull out” the
vertical and horizontal component codes of the sum code, and
the ECC circuits themselves. It should be particularly noted
that no extra column or row decoders are needed, compared to
an uncoded memory. The overhead in terms of parity cells has
already been determined, and is given by the redundancy of
the overall sum code. In the sections that follow, we will
estimate the complexity of the two remaining areas.

B. Selector Block Complexity
Fig. 3 models the circuitry necessary to extract the

component horizontal (row) and vertical (column) codewords
of the sum code, in terms of multiplexers. It can be seen that
nl k2-input multiplexers are required to extract the horizontal
codeword in which the addressed data bit lies, and n2 k,-input
multiplexers are required to extract the vertical codeword. In
practice, a multiplexer is implemented very simply by a set of
two-input AND gates (one for each MUX input) with their
outputs wire-oeed together. One input of the AND gate is the
data input and the other is the controlling input. This input is
normally driven via a decoder from the multiplexer select or
address lines. However, in our case, the select lines are simply
the RAM column address lines, and these have already been
decoded into 1-out-of-kl and 1-out-of-kz by the column
decoders shown in Fig. 2. The selector block is, therefore,
simply a collection of two input AND gates which together with
the column decoder lines acts as the required multiplexers. It
therefore follows that a total of nlk2 + n2kl two-input AND

gates are required to extract the horizontal and vertical
component codewords. It also follows that the data selector
multiplexer requires klk2 = K AND gates which are needed in
the uncoded case as well. We can, therefore, ignore this
complexity component when comparing different coding
schemes for a given value of K.

C. ECC Complexity

I) Syndrome Complexity: The first task the ECC hardware
must perform is to compute the horizontal and vertical
component code syndromes. This is illustrated in Fig. 4. Each
syndrome bit is the XOR sum of various of the selected

FUJA er al.: LINEAR SUM CODES FOR RANDOM ACCESS MEMORIES 1037

(X] (- 1
DATA & PARITY

Fig. 3 . Selector block layout.

c c Honzontal Codeword

5 k + 1 mputs/gate

Venical Codeword

5 k 2 + 1 mputdgate

In this case, each syndrome bit is the XOR sum of three data
bits and one parity bit, indicating that three four-input gates
are needed. This in turn implies that each syndrome bit can be
computed with three two-input gates. In general, the number
of two-input gates needed to compute the syndrome of an (n,

n 1 bits n 2 bits

1 1 1 1 1 1 k) block code is given by
s i s2 ' n l - k l s 1 s 2 'n , -k ,

() I Vertical Syndrome Vemcal Syndrome IIHII-(n-k)
Fig. 4. Syndrome complexity. where IlHll is the number of 1's in the parity check matrix of

codeword data bits and the corresponding codeword parity bit.
The number of multiinput XOR gates needed is therefore equal
to the the number of parity bits in the horizontal code plus the
number of checks in the vertical code. In addition, the
horizontal XOR gates have potentially k , + 1 inputs and the
vertical XOR'S have k2 + 1 inputs. However, in practice, the
multiinput XOR'S are made up from two-input XOR'S, and so an
x input XOR requires x - 1 two-input XOR gates to implement.
The actual number of inputs needed on each XOR depends on
the number of data bits involved in the particular syndrome bit
computation. This can be found by inspecting the parity check
matrix H of the particular code. For example, the H matrix of
the (7, 4) SEC Hamming code is given by

1 0 0 0 1 1 1

0 0 1 1 1 0 1
0 1 0 1 0 1 1 1 ,

the code. The total number of two-input XOR'S needed to
implement syndrome computation for an (n,, kZ, n2 , kz) linear
sum code is therefore

where H I and H2 are the parity check matrices for the
constituent codes.

The three block codes which we used as constituent codes
for the class of sum codes discussed in Section I11 are the SED,
SEC, and SEC-DED codes; Hsiao [1 I] has demonstrated a
procedure for constructing such codes such that the number of
1's in the parity check matrices is minimized. Using this
procedure, one can arrive at the following values:

1038 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31. NO. 9. SEPTEMBER 1988

I

double error detect

Fig. 5 . ECC complexity.

where x is determined by the inequalities E;:; (“ i k) < n <
E:=] (“Tk).

where y is determined by the inequalities (;,-,”,) < n <
2) Correction Decoder Complexity: We now consider the

complexity of the circuits needed to actually correct the
addressed bit.

The sum code decoding procedure for different codes has a
common requirement. That is, for both component codes, we
need to know if the component syndrome indicates an error in
the addressed bit, or alternatively if the syndrome is zero.
This information is then combined with similar information
from the other component code, to produce a correction output
signal which will correct the addressed bit via an XOR gate. The
complexity of the ECC decoder lies mainly in the detection
circuit, and so we can ignore the logic that combines the two
component codes. Consider Fig. 5. This shows a decoder
circuit for a 3-bit syndrome that provides a logic one output if
the syndrome indicates an error in a particular bit AND that bit
is being addressed. Also, an indication of the all-zero
syndrome is output. The lookup table that converts syndromes
into error locations is essentially being stored in the intercon-
nections to the AND gates. In the case of the SEC-DED code,
an indication of a syndrome corresponding to a double error is
also needed.

In the case of the SED code, this whole circuit reduces to a
piece of wire, as the single-bit syndrome provides all the
information needed. For SEC block codes, however, k + l(n
- k + 1)-input AND gates are needed; one more gate is needed
to double-error detection. Therefore, in terms of two-input
gates, SED requires zero, SEC requires (k + l) (n - k) , and
SEC-DED requires (k + 2)(n - k) .

(;;:I).

3) Encoder Complexity: Finally, consider the circuits
needed to perform a write operation; this part of the RAM
must not only write data into memory, but it must also alter the
row and column parities so that the word line remains a valid
sum codeword. We assume that all write cycles-and indeed
all read cycles that reveal an error in the addressed bit-are in
fact read-modify-write cycles. This is done so that errors in
memory are cleaned out as they are found and not allowed to
accumulate.

As mentioned above, the write operation consists of two
parts-writing the new data into the addressed location, and
making any necessary changes to the parities. This can be
achieved as follows. First, the new data bit is compared to the
corrected stored data bit. If they are the same, then no panty
changes are necessary. If they are different, then all parity bits
that check that particular location must be complemented.

Fig. 6 shows such an encoder for one constituent code. A
set of n - k OR gates takes its input from the already
implemented k select lines. The interconnection matrix is
specified by which data bits are included in which parity
checksums; that is, each OR gate is associated with a parity bit,
and the output of an OR gate goes high whenever the associated
parity bit is affected by the addressed bit. If the new data are
different from the old data, then n - k AND gates and n - k
XOR gates selectively flip those parity bits that are specified by
the outputs of the OR gates.

Thus, to implement the encoder described here requires (n,
- kl + n2 - k2) two-input AND gates, the same number of
two-input XOR gates, and [llHIII + llH211 - 2(nl - k ~) - 2(n2
- kz)] two-input OR gates.

One more minor point deserves mention. The encoding
circuit described here is for writing new data onto a RAM
chip. The only other time any kind of encoding process is
required is during a refresh cycle. During refresh, all of the
data in the codeword are rewritten, “scrubbing” the data and
making it easy to simply recompute all of the parities.

D. Overall Complexity
Having assessed the complexity of the three main overhead

areas needed for sum code ECC in terms of AND gates and XOR

gates, we can combined these into a single measure. In CMOS
technology, the needed AND gates and OR gates can be
implemented with four transistors, and the XOR gates with six.
Expressing the complexity in terms of transistors then allows
us to compare the various coding schemes with a single
measure.

V. NUMERICAL RESULTS
In Fig. 7 we have graphed R * (L) for the four codes studied

in Section 111. In addition, we have listed in Table I the
complexity data for the optimal (i.e., best rate) configurations
of each of these codes for several values of L .

Several conclusions can be drawn from these data; among
them are the following.

Once the decision is made to place error control on the
chip, relatively little is paid in terms of complexity to increase
the power of the code; the difference in the number of
transistors needed to implement the single-error-tolerating

FUJA et al.: LINEAR SUM CODES FOR RANDOM ACCESS MEMORIES 1039

k
Selector

Lines

corrected
read data

Write
data

w
n-k
new

Parity Parity
checks checks

Fig. 6 . Encoder complexity

L
Fig. 7. Rates for a class of ECC’s.

code and the double-error-tolerating codes is modest, and the
difference between the two- and three-error-tolerating codes is
essentially nonexistent.

There is a penalty in terms of code rate which must be
paid for increasing the power of the on-chip code. However,
relatively high rates can be achieved with the multiple-error-
tolerating codes for reasonable values of L ; for instance, by
placing 256 data bits on each word line, a two-error-tolerating
SEC-DED/SED code can be implemented at a rate of 0.744.
This rate can be considered acceptable, since there is currently
a commercial RAM chip on the market that employs a
shortened (12, 8) Hamming code with a rate of 0.667 [8]. The
increase in rate is, or course, directly attributable to the
increased blocklength of the SEC-DEDISED code, and it
demonstrates one of the key tenets of information theory-that
it is “better” (in terms of both rate and performance) to build
long codewords with strong error correcting capabilities than
to build shorter, weaker codewords.

In comparing the two double-error-tolerating codes, the
SEC-DED/SED configuration seems to be preferable to the
SEC/SEC implementation. The optimal rates for the SEC-
DED/SED configurations range from 10 to 20 percent better
than those of the SEC/SEC codes over the most reasonable
values of L (i.e., 8 < L < 12). The complexity of
implementing these codes is essentially the same whether one
chooses SEC-DED/SED or SEC/SEC.

VI. SUMMARY
In this paper, the following points were made.
1) A class of error control codes called linear sum codes

was defined; these codes are a generalization of the bidirec-
tional parity check code implemented by Nippon Telephone
and Telegraph, and their intended use is for error control on
the word lines of random access memories. They are similar to
product codes in that their codewords are two-dimensional
arrays constructed from two constituent codes. They differ
from product codes by a constraint put on the decoding of
LSC’s; this constraint involves taking advantage of the
addressing scheme used on RAM’S to minimize the overhead
of codeword selection.

2) One particularly simple class of LSC’s-those which can
be constructed from parity checks, Hamming codes, and
extended Hamming codes-were examined in detail. It was
shown that codes capable of tolerating one, two, and three
errors can be found in this class of codes. Furthermore, simple
decoding algorithms were given, and the best achievable code
rates were found for these codes.

3) The complexity of actually implementing these codes
was examined; this was given in terms of the number of gates
required to perform the different selection and computation
functions required for error correction. It was shown how the

1040 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 9. SEPTEMBER 1988

TABLE I
RATES AND COMPLEXITIES OF SEVERAL CODES FOR VARYING VALUES

OF L

Note: Since L = 12 is of the form 2”’ - rn, there are two SEC-DED/SED configurations which
achieve R*(L) (see Section In-B-2-b); we have included the configuration which minimizes the
complexity.

complexity varies with the dimensions of the codewords and
with the parity check matrices of the constituent codes.

4) Finally, several numerical examples were given for
specific codes; this showed that multiple-error-correcting
LSC’s could be implemented at rates favorable to those of
single-error-correcting codes already used in some RAM
designs, and that the complexity penalty paid for doing so is
not significant.

APPENDIX

Proof of Lemma 2.1: Let C:, 0 < j < k l , represent a
partition of the row code by the number of nonzero symbols in
the information symbols; that is, C: is a set containing all those
codewords in the row code with exactly j nonzero symbols in
the information segment. Similarly, let C;, 0 < j < k2, be a
partition of the column code. Finally, let p l (j) and p2(j) be
the Hamming weight of the ‘‘lightest’’ codewords in Cj and
C;, respectively.

First, for arbitrary row and column codes, consider any
nonzero codeword c . We argue that the Hamming weight \ I C 11
is at least df,,,, + d;,, - 1. Let (i , j) be the coordinates of a
nonzero element in the information array of c , and let m and n
be, respectively, the number of nonzero elements in the ith
row and the j th column of the information array. Then the
weight of this codeword llcll is no less than p l (m) + p2(n) -
1 . Thus, from the definition of df,,, and d;,,,

described in Lemma 2.1 ; this is equivalent to assuming that
pI(l) = df,,, and p2(2) = di,,,. Choose c1 and c2 to be
minimum weight codewords from the row code and column
code, respectively, such that cI and c2 each contain only a
single nonzero symbol in their information parts. That is,

and

Furthermore, because the codes are linear, we can assume that
both of these nonzero information symbols are the symbol
“1.”

Let j and i be, respectively, the location of the nonzero
entries in the information parts of c , and c2. Then by placing a
single “1” at the (i , j) t h coordinate and zeros everywhere else
in the information array, exactly dkin - 1 nonzero entries are
induced in the parities of the ith row and d’,,, - 1 nonzero
entries are induced in the parities of the j th column. All other
elements in the codeword are zero. Thus, the Hamming weight
of this codeword is dkin + d;,, - 1, and so

d,,, < dkin+ d i i n - 1 .

Thus, equality holds. QED
Proof of Lemma 3.2: From simple calculus,

2 - L ’ 2 M L (~) = 2 - X Since this is true for all nonzero c ,

dmin = min 11 C I I 2 df , , , + d i , , - 1.
C Z O

+ 2 “ [In 2 (: - - x + 1) - 1 1
Now, assume the constituents codes have the property

FUJA et al.: LINEAR SUM CODES FOR RANDOM ACCESS MEMORIES 1041

and

2 - L / 2 M ; (~) = l n 2 2-” - + x + l In 2 - 2 K:) 1
2 In 2 (2 ” + 2 - ”) (3 In 2 - 2)

for x E [2 - (L / 2) , (L / 2) - 21. Thus, M; (x) is positive
and so ML (x) is convex U on [2 - (L / 2) , (L / 2) - 21. To see
that there is a unique minimum at x = 0, we just note that

Proof of Lemma 3.4: Define j = L - (2” - m), so that
I, = 2” - m - j and 0 < j < 2” - 2. Make the change of
variable t = 2”-’ + (j / 2) - x; then we can restate the
lemma as follows: Define P L : R ---* R as

ML(0) = 0. QED

ThenPL(t - 1) < PL(t) for t E [m - 2“--’ - (j / 2) + 1 ,
01 and PL(t + 1) 2 PL(t) f o r t E [0, 2 ” - ’ + (j / 2) - 31.

First take t E [0, 2“-’ + (j / 2) - 31. Then

2 - (zm - + (j 1 2)) [PL(f + 1) - PL (t)]

2 0

i fandonlyifg(t) 2 1, whereg(t) = 2 2 r - m + 1 (2 m - 1 + (j / 2)
- t) . Now, g(0) = 1 + (j / 2 ”) 2 1 . (Note: Equality holds
here if and only if j = 0; this will mean that the optimal
configuration described in the lemma is unique except when j
= 0, or, equivalently, when L is of the form 2” - m.)
Furthermore,

< O

if and only if h (t) < 1, where h(t) = 2 2 f - m - 1 (2 m - 1 + (j / 2)
- t + 1) . But

1 j 1
h (0) = - + ~ + - 4 2m+2 2m+l

becausej < 2” - 2. Thus, h(0) < 1 . Furthermore,

> / 221-m-1 (2 “ + j + (2 In 2 - 1))

> 0.

for t < 0

Thus, h (t) is monotone increasing on [m - 2”-’ - (j / 2) +

- 1) f o r t E [m - 2“-’ - (j / 2) + 1 , 01. QED
1 ,0] and so h (t) < 1 on that interval; therefore, P L (t) < P L (~

131

141

r71

181

[91

j < 22/-m+l (6 In 2 - 1) for t < 2 ’ ” - ’ + - - 3
2 \

1111

REFERENCES
C. L. Chen and M. S. Hsiao, “Error-correcting codes for semiconduc-
tor memories: A state-of-the-art review,” IBM J. Res. Develop., vol.
28, Mar. 1984.
T. C. May and M. H. Woods, “Alpha particle induced soft errors in
dynamic RAM’s.” IEEE Trans. Electron Devices, vol. ED-26, pp.
2-9, Jan. 1979.
T. Fuja and C. Heegard, “Rowicolumn replacement for the control of
hard defects in semiconductor RAM’s,” IEEE Trans. Comput., vol.
C-35, pp. 996-1000, Nov. 1986.
F. L. Osman, “Error-correction technique for random access memo-
ries,” IEEE J . Solid-State Circuits, vol. SC-17, pp. 877-881, Oct.
1982.
T. Mano et al., “Circuit techniques for a VLSI memory,” IEEE J.
Solid-State Circuits, vol. SC-18, pp. 463-469, Oct. 1983.
J. Yamada et al . , “A submicron 1 Mbit dynamic RAM with a 4-bit-at-
at-time built-in ECC circuit,” IEEE J. Solid-State Circuits, vol. SC-

T. Mano et al . , “Circuit technologies for 16 Mb DRAM’S,” in Proc.
IEEE34th Int. Solid State Circuits Conf., New York, NY, Feb. 25-
27, 1987.
J . E. O’Toole, T. M. Trent, and W. D. Parkinson, “256K dynamic
error corrected ram,” memorandum, Micron Technologies, Inc.
T. Fuja, C. Heegard, and R. Goodman, “Some linear sum codes for
random access memories,” in Proc. IEEE Int. Symp. Inform.
Theory, Brighton, England, June 23-28, 1985.
-, “The structure and complexity of linear sum codes,” in Proc.
Allerton Conf. Commun., Contr., Comput., Champaign-Urbana,

M. Y. Hsiao, “A class of optimal minimum odd-weight-column SEC-
DED codes,” IBM J. Res. Develop., vol. 14, pp. 395-401, July
1970.

19, pp. 627-633, Oct. 1984.

IL, Oct. 2-4, 1985.

> 0. 1121 W. W. Peterson and E. J . Weldon, Jr., Error-Correcting Codes.
Cambridge, MA: MIT Press, 1972.

Thus, g (t) 2 1 and so PL(f + 1) 2 PL(f) for all t E [0, 2”-

Then Tom Fuja (S’80-M’87) was born on August 15,
1959 in Durand, MI. He received his undergraduate
education at the University of Michigan, graduating
magna cum laude with the B.S.E.E. and the
B.S.Comp.E. in 1981. After some time spent as a
Member of Technical Staff at AT&T Bell Laborato-
ries in Holmdel, NJ, he began studies in 1982 at
Cornell University, Ithaca, NY. He received the
M.Eng.(E.E.) and Ph.D. degrees from Cornell in
1983 and 1987, respectively.

In 1987, he joined the faculty at the University of

1042 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 9. SEPTEMBER 1988

Maryland, College Park, MD, as an Assistant Professor of Electrical In 1984, Dr. Heegard received the Presidential Young Investigator Award
Engineering. He teaches courses in communication systems and error control from the National Science Foundation and the IBM Faculty Development
coding. His research interests include information and coding theory, with Award. He was elected to the Board of Governors of the Information Theory
particular emphasis on applications regarding computer memories. Group of the IEEE in 1986. He is a member of Eta Kappa Nu.

Dr. Fuja was an AT&T Bell Laboratories Scholar while at Cornell. He is a
member of Tau Beta Pi and Eta Kappa Nu.

Chris Heegard (S’75-M’81) was born in Pasadena,
CA, on October 4 , 1953. He received the B.S. and
the M.S. degrees in electrical and computer engi-
neering from the University of Massachusetts,
Amherst, in 1975 and 1976, respectively, and the
Ph.D. degree in electrical engineering from Stan-
ford University, Stanford, CA, in 1981.

From 1976 to 1978, he was an R & D Engineer at
Linkabit Corp., San Diego, CA, where he worked
on the development of a packet-switched satellite
modem and several sequential decoders for the

decoding of convolutional codes. In 1981, he joined the faculty of the School
of Electrical Engineering at Cornell University in Ithaca, NY, where he is
currently Associate Professor. At Cornell he teaches courses in digital
communications, error control codes, information theory. and introduction to
digital systems. His current research interests include information and
communication theory, algorithms for digital communications. coding for
computer memory systems with applications to VLSl memory architectures.
and signal processing and error control in optical and magnetic recording
systems.

Rod Goodman (M’85) was born in London,
England on February 22, 1947 He received the
B Sc degree in electrical engineering from Leeds
University. Yorkshire, England, in 1968 He then
spent four years studying for the Ph D degree in
Electronics at the University of Kent at Canterbury,
England

From 1972 to 1975 he was a lecturer in the
Department of Electrical Engineering at Kingston
Polytechnic, Surrey, England and he also ran a
small electronics company in Canterbury. In 197.5

he was awarded the Ph D and joined the faculty of the University of Hull d5

Lecturer In 1979. he was granted tenure and in 1982 was promoted to Senior
Lecturer in Electrical Engineering In 1985, he Joined the faculty of the
Department at Electrical Engineering at the California Institute of Technology
as Associate Profesor Hi\ teaching specialties are digital communications,
computer engineering, and VLSI His research has spanned error control
coding. cryptography, medical electronics, information engineering, and
expert qystems In addition. he has founded two high technology research and
development companies in the U K They are Electronic Automation Ltd , a
company developing robot vision \y~terns, and Metaforth Ltd , a developer of
high-speed computer architectures for real-time AI applications He ha5
consulted for a wide variety of government and commercial organizations,
currently, he i\ a consultant for the Jet Propulsion Laboratories and Pacific
Bell.

